
An English Dependency Treebank
à la Tesnière

Federico Sangati
University of Amsterdam
f.sangati@uva.nl

Chiara Mazza
University of Pisa

chiara.mazza@gmail.com

Abstract

During the last decade, the Computational Linguistics community has
shown an increased interest in Dependency Treebanks. Several groups have
developed new annotated corpora using dependency representation, while
other people have proposed several automatic conversion algorithms to trans-
form available Phrase Structure (PS) treebanks into Dependency Structure
(DS) notation. Such projects typically refer to Tesnière as the father of de-
pendency syntax, but little attempt has been made to explain how the chosen
representation relates to the original work. A careful comparison reveals
substantial differences: modern DS annotations discard some relevant fea-
tures characterizing Tesnière’s model. This paper is presenting our attempt
to go back to the roots of dependency theory, and show how it is possible
to transform a PS English treebank to a DS notation that is closer to the one
proposed by Tesnière, which we will refer to as TDS. We will show how
this representation can incorporate all main advantages of modern DS, while
avoiding well known problems concerning the choice of heads, and better
representing common linguistic phenomena such as coordination.

1 Introduction

Although the tradition of using syntactic models in linguistics can be dated back to
Panini’s work (4th century BC), the discussion about which model linguists should
use is still open. Corpus-based Computational Linguistics (CL) was born in the
middle of last century, an important period of change in linguistic theory. In conti-
nental Europe, the French structuralist Lucien Tesnière, was developing a general
theory of syntax, which was published posthumously in 1959 [15], and would be-
came the foundation of Dependency Structure (DS) theory. In 1957 Noam Chom-
sky published his own work on Syntactic Structures [3], which would become the
main reference for Phrase Structure (PS) theory.

Corpus-based CL has been strongly influenced by PS notation, due to the strong
worldwide position of Chomskyan theory, and still nowadays most linguistic re-
sources conform to this representation. Only in the last decade, more and more
interest was placed on dependency theory, thanks to several research groups that

f.sangati@uva.nl
chiara.mazza@gmail.com


have developed new annotated treebanks using DS formalisms (e.g., [1], [6]). In
the same period other people have proposed several automatic conversion algo-
rithms to transform available PS treebanks into DS (e.g., [17], [5], [9]). Such
projects typically refer to Tesnière as the father of dependency syntax, but little
attempt has been made to explain how the chosen dependency representation re-
lates to the original work. A careful comparison reveals substantial differences:
modern DS retains only the main idea proposed by Tesnière, namely the relation
of dependency between words (section 2.1), while other operations and features of
the original model are discarded or not overtly represented.

In the current paper we present an ongoing project of converting the English
Penn Wall Street Journal (WSJ) Treebank [11] into a DS notation that is closer to
the one proposed by Tesnière, which we will refer to as TDS. In particular we will
reintroduce three key concepts: the division of a sentence into blocks of words,
which act as intermediate linguistic units (section 2.2), the junction operation, to
handle coordination and other types of conjoined structures (section 2.3), and the
operation of transference, to generalize over the categories of the linguistic ele-
ments (section 2.4)1.

Our work is not purely driven by historical concerns; in section 3 we will in
fact give empirical evidence that shows how this representation can incorporate all
main advantages of modern DS, while avoiding well known problems concerning
the choice of heads, and better representing common linguistic phenomena such as
coordination. Finally, in section 4 we will give more details about the conversion
procedure, and the generated structures.

2 Dependency Structures à la Tesnière

2.1 The dependency relation

The main idea behind Tesnière’s model is the notion of dependency, which identi-
fies the syntactic relation existing between two elements within a sentence, one of
them taking the role of governor (or head) and the other of dependent (régissant
and subordonné in the original terminology). Tesnière schematizes this syntactic
relation using a TDS stemma as in figure 1, putting the governors above the de-
pendents. On the right side of the figure we present the same sentence using our
notation, incorporating all the main features introduced by Tesnière, which we will
explain in the following sections.

1See in [15] part I ch. 22 on nucléus, part II on jonction, and part III on translation. We choose
transference for the original French word translation to avoid any misunderstanding with the other
meaning of the word translation in English. Unfortunately, 50 years after its publication, there is still
no official English translation of the author’s work.



is singing

friend song

my old this nice my old

friend

is singing

this nice

song

Figure 1: TDS of the sentence “My old friend is singing this nice song”, in Tesnière
notation (left) and in our TDS representation (right).

2.2 Words, blocks and categories

In TDS, all words are divided into two classes: full content words (e.g., nouns,
verbs, adjectives, etc.), and empty functional words (e.g., determiners, preposi-
tions, etc.). Each full word forms a block2 which may additionally include one or
more empty words, and it is on blocks that operations are applied. Tesnière distin-
guishes four block categories (or functional labels3), here listed together with the
original single letter notation, and the color reported in our diagrams: nouns (O,
blue), adjectives (A, green), verbs (I, red), and adverbs (E, yellow).

The verb represents the process expressed by the clause, and all its arguments,
representing the participants in the process, have the functional labels of nouns, and
are determined by the valence of the verb. On the other hand the verb’s adjuncts
(or circonstants), representing the circumstances under which the process is taking
place, i.e., time, manner, location, etc., have the functional labels of adverbs. We
will now introduces two operations, junction and transference, by means of which
it is possible to construct more complex clauses from simple ones.

2.3 Junction

The first operation is the junction. It is employed to group blocks which lie at the
same level, the conjuncts, into a unique entity which has the status of a block. The
conjuncts are horizontally connected in the TDS, belong to the same category, and
are possibly (and not always) connected by means of empty words, the conjunc-
tions. Figure 2 displays three coordinated structures4.

2Tesnière in [15, ch. 22] uses the term nucléus, and explains that it is important in order to
define, among other things, the transference operation (see section 2.4). In our diagrams blocks are
represented as black boxes, and empty words are written in grey to distinguish them from full words.

3We will use both terms interchangeably. Categories can be roughly seen as a simplification of
both PoS tags and dependency relations in DS’s. See also section 3.2.

4Tesnière uses the junction operation to represent coordinated structures and other particular
joined structures, such as the apposition (e.g., [the US president], [Obama]). Although our im-
plementation includes all types of junction, in this paper we will particularly focus on coordination
since it constitutes the majority of the cases, and yet the most problematic ones.



fall

Alfred and Bernard

a lunch

good but expensive

laugh and sing

children

Alfred and Bernard

fall a lunch

good but expensive children

laugh and sing

Figure 2: Examples of coordination. Tesnière’s original notation is on top, and our
notation at the bottom (we represent the junction with a yellow box).

2.4 Transference

The other operation is named transference. There are two types of transference.
The first degree transference is a shifting process which makes a block change
from the original category of the content word, to another5. This process often
occurs by means of one or more empty words belonging to the same block, called
transferrers. Figure 3 (left) shows an example of first degree transference. The
word Peter is transferred from the word class noun and takes the functional label
of an adjective via the possessive clitic ’s which acts as a transferrer. In our repre-
sentation (bottom), every block has two little colored boxes: the one at the bottom
indicates the original category of the content word, and the one at the top indicates
the category of the block after all transferences are applied.

The second degree transference occurs when a simple clause becomes an ar-
gument or an adjunct of another clause6, maintaining all its previous lower con-
nections, but changing its functional label within the main clause. The sentences
below represent some examples of second degree transference:

(1) She believes that he knows

(2) The man I saw yesterday is here today

(3) You will see him when he comes

5A somehow similar operation has been formulated in the framework of Combinatory Categorial
Grammar (cf. [8]), and goes under the name of type raising.

6In other words, the verb of the embedded clause becomes a dependent of an other verb. This
should not be confused with the case of compound verbs, which are represented as a single block,
where auxiliaries are labeled as empty words (see for instance the TDS in figure 1).



book

Peter
A
's

he

believes

She O
that knows

You E
when comes

he

him

will see

Peter 's

book

She

believes

that

he

knows You

will see

him when

he

comes

Figure 3: An example of first degree transference of the phrase “Peter’s book”
(left), and two examples of second degree transference of the sentence “She be-
lieves that he knows” (center) and the sentence “You will see him when he comes”
(right).

In the first sentence, we have a transference verb� noun by means of the trans-
ferrer that. The embedded clause in italics takes the functional label of a noun,
and becomes the object of the verb. Figure 3 (center) shows the corresponding
TDS. The embedded clause in the second example has the functional label of an
adjective. It is a transference verb� adjective without any transferrer. The third
sentence is an example of transference verb� adverb: the clause in italics has the
functional label of a temporal adverb through the transferrer when. Figure 3 (right)
shows the corresponding TDS.

3 Advantages of TDS over DS

In this section we will describe three main advantages of using TDS notation as an
alternative of currently available DS representations. In particular we will discuss
the issue of choosing the linguistic heads in PS trees (section 3.1), compare how
the two models categorize dependency relations (section 3.2), and how they treat
the phenomenon of coordination (section 3.3).

In order to compare the different representations, Figure 4 illustrates three
structures of an English sentence: the original Penn WSJ PS tree, the same struc-
ture converted to DS as in [9], and the TDS our conversion algorithm generates.



S

NP-SBJ

NNP

Japan

VP

CONJP

RB

not

RB

only

VP

VBZ

outstrips

NP

DT

the

NNP

U.S.

PP-LOC

IN

in

NP

NN

investment

NNS

flows

CONJP

CC

but

RB

also

VP

VBZ

outranks

NP

PRP

it

PP-LOC

IN

in

NP

NP

NN

trade

PP-CLR

IN

with

NP

JJS

most

JJP

JJ

Southeast

JJ

Asian

NNS

countries

.

.

SBJ
NNP
Japan

CC
RB
not

DEP
RB

only

COORD
VBZ

outstrips

NMOD
DT
the

OBJ
NNP
U.S.

ADV
IN
in

NMOD
NN

investment

PMOD
NNS
flows

ROOT
CC
but

COORD
RB
also

COORD
VBZ

outranks

OBJ
PRP

it

ADV
IN
in

PMOD
NN

trade

ADV
IN

with

NMOD
JJS

most

AMOD
JJ

Southeast

NMOD
JJ

Asian

PMOD
NNS

countries

P
.
.

Japan

not only outstrips

the U.S. in

investment

flows

but also outranks

it in trade

with

most

Southeast

Asian

countries .

Figure 4: Comparison between different representations of an English sentence.
Top: original WSJ PS taken from the WSJ sec-00 (#666). Null productions and
traces have been removed. The red labels are the heads according to the DS be-
low. Center: DS according to [9] using the pennconverter script in conll2007
mode. Every word in the DS is presented together with its PoS and the label of
the dependency relation with its governor. Bottom: TDS our conversion algorithm
generates.



3.1 Choosing the correct heads

The first step in order to perform a PS-to-DS conversion is to annotate the starting
PS with head labels. This procedure has been initially proposed in Natural Lan-
guage Processing (NLP) by Magerman [10] and then slightly modified by others
(e.g., [17], [9]). If exactly one unique head is chosen for every constituent of the
PS, the enriched tree can be shown to be homomorphic to a single projective DS
(cf. [7], [13]).

The choice of heads assignment is a critical one: although much linguistic
literature is present on this issue (cf. [4]), in NLP there have been only few at-
tempts to empirically evaluate different heads assignments (i.e., [2], [14]). While
certain choices are less disputed (e.g., the verb is unequivocally the head of simple
clauses), most of the remaining ones are contended between empty and full words.
The most frequent cases are listed here:

• Determiner vs. noun in nominal phrases (e.g., the man).

• Preposition vs. noun in prepositional phrases (e.g., on paper).

• Complementizer vs. verb in sub-clauses (e.g., I believe that it is raining).

In TDS, all these choices become irrelevant: since every empty word is in-
cluded in the block together with the content word it belongs to, no preference is
needed7.

3.2 Categories and Blocks

Currently used DS representations make use of labels to identify the dependencies
between words. For example SBJ and OBJ are used to mark the relation between a
verb and its subject and direct object respectively. These labels are closely related
to the four categories proposed by Tesnière. The main difference is in their number:
while DS uses around a dozen of different labels, TDS uses only four. This turns
out to be beneficial for a more simplified and yet generalized analysis.

The other difference is more subtle. In DS every word is a node, and therefore,
for every node (except for the root) we need to identify the label of the dependency
relation with its governor. The problem here is related to the above discussion
about the choice of heads. If we take the example in figure 3 (center), one has
to choose whether the complementizer or the verb is the direct object of the main
verb. TDS better represents these cases, by including both elements in the same
block. This choice is justified by the fact that both elements contribute to make the
node an argument or an adjunct of the verb.

7In TDS, heads assignment remains essential when two or more full words are sister nodes of the
same constituent, such as in “the woman who I like”. In this example the verb should be the head.



3.3 Coordination

Coordination represents one of the major problems in currently used DS represen-
tations (cf. [13]). If dependency8 is the only operation available to relate words,
two main strategies are adopted:

1. One conjunction (or conjunct) is the head of the other elements.

2. Each element (conjunction or conjunct) is the head of the adjacent element
which follows.

The first solution is the one which is more commonly adopted in current PS-to-
DS conversions. The second one is proposed by Mel’čuk in [12]. Both solutions
are problematic in circumstances such as the one of figure 4. If the coordination
includes multiple conjunctions, assigning the head to either one of the conjuncts
or one of the conjunctions, leads to a strong asymmetry in the structure: either
the conjuncts are not all at the same level, or the set of dependents includes both
conjunctions and conjuncts. Moreover, if the coordination phrase is coordinating
verbs at the top of the sentence structure, other potential blocks, e.g., the subject
Japan in the example, will also appear in the set of dependents, at the same level
with the verbs they depend on9. Finally the conjunction phrase, i.e., a group of
words forming a single conjunction (e.g., not only in the example), is also poorly
represented in DS representations, since it is not grouped into a unique entity.

Tesnière’s choice of adding a special operation to handle coordination is justi-
fied if we consider how well it represents all the cases DS fails to represent con-
sistently. Coordination in TDS can be seen as a borrowing of the notion of con-
stituency from PS notation: the different blocks being conjoined have equal status,
they govern all the blocks being dominated by the coordination block, and are de-
pendents on all blocks the coordination structure depends on.

4 Converting the Penn WSJ in TDS notation

In this section we will present the current state of the project of converting the Penn
WSJ treebank [11] into TDS notation. In section 4.1 we will introduce the elements
composing each generated TDS, in section 4.2 we will describe the conversion
procedure, and in section 4.3 we will provide some error analysis on the generated
structures.

8We only consider the case of single headed DS, i.e., each word should have exactly one governor.
9The labels of the dependency relations, such as the ones in the DS of figure 4, can often help

to differentiate between dependents which have the same head, but differ in their functional labels.
However they cannot be considered an optimal solution, since they don’t eliminate the structural
asymmetry.



4.1 Elements of a TDS

Figure 5 illustrates the main elements, introduced in section 2, which we need to
define in order to construct our TDS’s. Words are divided into full and empty
words10, and blocks are either standard or junction blocks. A generic block con-
tains a list of empty words, and a list of dependent blocks. In addition a standard
block has to contain a unique full word, while a junction block needs to specify a
list of conjunction words and a list of conjunct blocks.

Word { {
Standard Block

- Full Word (FW)

Junction Block

- Conjunctions (EW)
- Conjuncts (Block)

Block

- Empty Words (EW)
- Dependents (Block)

Empty Word (EW)

Full Word (FW)

Figure 5: Word and block types.

4.2 The conversion procedure

In order to generate TDS’s from the Penn WSJ, we have decided to start from the
PS original annotation, instead of using already converted DS’s. The main reason
for this choice is that PS annotation of the WSJ is richer than currently available DS
representations. This concerns in particular coordination structures, which would
be much harder to reconstruct from DS notation (see section 3.3).

Each PS in the corpus is preprocessed using the procedure described in [16],
in order to add a more refined bracketing structure to noun and adjectival phrases.
Moreover, we remove null productions and traces from all trees, and enrich them
with head labels11.

The pseudocode reported in algorithm 1, contains the procedure which is ap-
plied to each PS of the corpus, in order to generate the respective TDS. The al-
gorithm recursively traverses from top to bottom each node of a PS, and outputs
either a junction block12 (left) or a standard block (right).

10A word is empty if its PoS is one of the following: punctuation marks, CC, DT, EX, IN, MD,
POS, RP, SYM, TO, WDT, WRB. Moreover special pairs of words are marked as empty (e.g., more
like, more than, even though, such as, many of, most of, rather than).

11This operation is done using the treep script [2], and a rule set which is a modification of the
one used in [10]. This modification mainly consists in prioritizing conjunctions’ PoS within several
phrase structures (e.g., NP, VP, QP). Moreover we have added few rules for the non-terminals (i.e.,
"NML", "JJP") introduced by the procedure described in [16].

12A constituent is roughly identified as a junction structure when it presents conjunctions elements
(i.e., CC, CONJP), or when it is composed of subconstituents with the same labels, such as in the
cases of apposition (see note 4).



Algorithm: Convert(NPS)
Input: A node NPS of a PS tree
Output: A block NT DS of a TDS tree
begin

instantiate NT DS as a generic block
if NPS is a junction then

instantiate NT DS as a junction block
foreach node D in children of NPS do

if D is a conjunct then
DT DS←Convert(D)
add DT DS as a conjunct block in NT DS

else
Dlex← lexical yield of D
if Dlex is a conjunction then

add Dlex as a conjunction in NT DS

else
add Dlex as empty word(s) in NT DS

else
Nh← head daughter node of NPS

if Nh yield only one word wh then instantiate NT DS

as a standard block with wh as its full word
else NT DS←Convert(Nh)
foreach node D in children of NPS do

if D == Nh then continue
Dlex← lexical yield of D
if Dlex are only empty words then

add Dlex as empty word(s) in NT DS

else
DT DS←Convert(D)
add DT DS as a dependent of NT DS

return NT DS
end

Algorithm 1: Pseudocode of the conversion algorithm from PS to TDS.

For each TDS the algorithm generates, several post-processing steps are applied:

1. Join together all compound verbs into a unique block13.

2. Unify in a unique standard block all contiguous proper nouns.

3. Define the original category14 of each block.

4. Define the derived category15 after transferences are applied.

The conversion procedure just described has been successfully employed to
generate the first TDS version of the Penn WSJ treebank. The conversion and
visualization tool, together with its technical documentation, is freely available at
http://staff.science.uva.nl/~fsangati/TDS.

13E.g., [is eating], [has been running]. All verbs preceding the main one, are marked as empty
words. This procedure doesn’t apply to junction structures, see also section 4.3.

14This category is specified by the PoS of its full word if it is a standard block, and by the original
category of the first conjunct block, if it is a junction structure.

15This category is specified by the original category of the governing block (if the current block is
the root of the structure the category coincides with its original category). If the governing block is
a noun or an adjective, the current block is an adjective or an adverb, respectively. If the governing
block is a verb, the current block is either a noun or an adverb. This last decision depends on whether
the original PS node, from which the current block derives, has a circumstantial label, i.e., it contains
one of the following tags: ADVP, PP, PRN, RB, RBR, RBS, ADV, BNF, CLR, DIR, EXT, LOC,
MNR, PRP, TMP, VOC.

http://staff.science.uva.nl/~fsangati/TDS


4.3 Error analysis

At this stage it is impossible to give a meaningful quantitative analysis of the over-
all accuracy of the conversion, since no gold corpus annotation is available for the
target format. However, a manual analysis on a small sample of the corpus reveals
that most of the mistakes relate to coordinated structures16, and wrongly assigned
categories (mostly arguments/adjuncts).

Moreover, in a limited number of cases, we found two possible inadequacies
of the current TDS notation, when dealing with specific linguistic phenomena. The
first issue concerns junction structures: while in our model the junction operation
can only join blocks, several linguistic constructions show the necessity of defining
it also on full (or empty) words within a block17. Two examples are the coordina-
tion of compound verbs (e.g., He was [eating and drinking]), and the coordination
of empty words (e.g., The indicator fell steadily [up to and through] the crash).

The second case regards the transferrers: in our implementation they must be
always empty words. There are however few cases in which a full words can
function as a transferrer, such as likely in “A forum likely to bring attention”. We
will take into consideration these modifications for future updates of the model.

5 Conclusion

In this paper we have described an ongoing project of converting the Penn Wall
Street Journal treebank from PS to TDS representation, inspired by the work of
Tesnière [15]. Corpus-based Computational Linguistics has often valued a good
compromise between adequacy and simplicity in the choice of linguistic represen-
tation. The transition from PS to DS notation has been seen as a useful simplifi-
cation, but many people have argued against its adequacy in representing frequent
linguistic phenomena such as coordination. The TDS conversion presented in this
paper, reintroduces several key features from Tesnière’s work: on one hand the
operation of junction enriches the model with a more adequate system to handle
conjoined structures (e.g., coordination); on the other, the blocks, the transference
operation, and the category system further simplify and generalize the model.

We are currently working on a probabilistic extension of our framework. The
idea is to define a language model which generates and parses sentences using
the new representation. In particular, for what concerns junction structures, our
intuition is that the model should generate them differently with respect to standard
blocks. If our intuition is correct, the new probabilistic model could be better at
modeling and predicting language structures.

16In certain complex coordinated structures, where conjuncts and modifiers of the coordination
are put at the same level, dependent blocks are wrongly identified as conjuncts. In other cases the
coordination is not detected because conjunction words are missing.

17This means that we would need to define an other element, in addition to the word-types of
figure 5 (left), which we could call junction word. This new entity would have to specify a list of full
(or empty) conjunct words and a list of (empty) conjunction words.



Acknowledgments
The authors are particularly thankful to Igor Mel’čuk, Willem Zuidema, Rens Bod, Yoav Seginer,
Sophie Arnoult, and three anonymous reviewers for their valuable comments. FS gratefully ac-
knowledge funding by the NWO (grant 277.70.006).

References
[1] Cristina Bosco, Vincenzo Lombardo, Daniela Vassallo, and Leonardo Lesmo. Building a Tree-

bank for Italian: a Data-driven Annotation Schema. In Proceedings of the Second International
Conference on Language Resources and Evaluation, pages 99–105, 2000.

[2] David Chiang and Daniel M. Bikel. Recovering latent information in treebanks. In Proceedings
of the 19th international conf. on Comput. Linguist. , pages 1–7, Morristown, NJ, USA, 2002.

[3] Noam Chomsky. Syntactic structures. Mouton, Den Haag, 1957.

[4] Greville G. Corbett, Norman M. Fraser, and Scott McGlashan, editors. Heads in Grammatical
Theory. Cambridge University Press, New York, 2006.

[5] Martin Forst, Núria Bertomeu, Berthold Crysmann, Frederik Fouvry, Silvia Hansen-Schirra,
Valia Kordoni. Towards a dependency-based gold standard for German parsers - The TiGer
Dependency Bank, 2004.

[6] Jan Hajič, Eva Hajičová, Petr Pajas, Jarmila Panevová, Petr Sgall, and Barbora Vidová Hladká.
Prague Dependency Treebank 1.0, 2001.

[7] David G. Hays. Grouping and dependency theory. In National Symposium on Machine Trans-
lation, pages 258–266, Englewood Cliffs, NY, USA, 1960.

[8] Julia Hockenmaier and Mark Steedman. CCGbank: A Corpus of CCG Derivations and De-
pendency Structures Extracted from the Penn Treebank. Comput. Linguist. , 33(3):355–396,
2007.

[9] Richard Johansson and Pierre Nugues. Extended Constituent-to-Dependency Conversion for
English. In Proceedings of NODALIDA 2007, Tartu, Estonia, May 2007.

[10] David M. Magerman. Natural Language Parsing as Statistical Pattern Recognition. PhD
thesis, Stanford University, 1994.

[11] Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a Large An-
notated Corpus of English: The Penn Treebank. Comput. Linguist. , 19(2):313–330, 1993.

[12] Igor Mel’čuk. Dependency Syntax: Theory and Practice. State Univ. of New York Press, 1988.

[13] Joakim Nivre. Inductive Dependency Parsing (Text, Speech and Language Technology).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[14] Federico Sangati and Willem Zuidema. Unsupervised Methods for Head Assignments. In
Proceedings of the 12th Conference of the European Chapter of the ACL, pages 701–709,
Athens, Greece, March 2009.

[15] Lucien Tesnière. Eléments de syntaxe structurale. Editions Klincksieck, Paris, 1959.

[16] David Vadas and James Curran. Adding Noun Phrase Structure to the Penn Treebank. In
Proceedings of the 45th Annual Meeting of the Association of Comput. Linguist. , pages 240–
247, Prague, Czech Republic, June 2007.

[17] Hiroyasu Yamada and Yuji Matsumoto. Statistical Dependency Analysis with Support Vector
Machines. In Proceedings of IWPT, pages 195–206, 2003.


	Introduction
	Dependency Structures à la Tesnière
	The dependency relation
	Words, blocks and categories
	Junction
	Transference

	Advantages of TDS over DS
	Choosing the correct heads
	Categories and Blocks
	Coordination

	Converting the Penn WSJ in TDS notation
	Elements of a TDS
	The conversion procedure
	Error analysis

	Conclusion

