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Abstract

This paper reports on-going work on building a large automatically tree-
aligned parallel treebank in the context of a syntax-based machine translation
(MT) approach. For this we develop a discriminative tree aligner based on
a log-linear model with a rich feature set. We incorporate various language-
independent and language-specific features taking advantage of existing tools
and annotation. Our initial experiments on a small hand-aligned treebank
show promising results even with small amounts of training data. The per-
formance of our approach is well above unsupervised techniques reported
elsewhere. This enables us to quickly create training material and alignment
models for additional language pairs. In recent work, we aligned more than
one million sentence pairs and started our experiments with the extraction of
transfer knowledge for our example-based machine translation system.

1 Introduction

A parallel treebank consists of a collection of sentence pairs that have been gram-
matically tagged, syntactically annotated and aligned on sub-sentential level [15].
This alignment usually includes more than the alignment of words but also links be-
tween all the corresponding constituents of given sentence pairs. Parallel treebanks
are valuable resources for a wide variety of applications. They are not only useful
as a resource for the induction of translation knowledge for machine translation
systems but also as a source for cross-lingual corpus-based studies, for example, in
contrastive linguistics. However, our main concern is the use of parallel treebanks
in the context of machine translation (MT). Since well-aligned treebanks will play
a substantial role in our MT model, finding an optimal solution to the problem
of tree alignment is very important. Various projects have been initiated to create



aligned parallel treebanks [7, 1, 5] and most of them are based on tedious manual
labor. There are some approaches to automatic tree alignment facilitating syntax-
oriented translation models [16, 4, 6, 17, 10]. In contrast to these unsupervised or
hand-crafted alignment systems, we propose a classifier-based alignment approach
based on supervised learning.

In the following section we outline our model including a discussion of fea-
tures used in our experiments. Thereafter, we show our results on the development
corpus and, finally, describe on-going work of applying our model to large scale
data sets.

2 Discriminative Tree Alignment

In our approach we look at the alignment of nodes in phrase-structure tree pairs.
We model this alignment using a discriminative feature-based model, which has the
advantage that we do not have to “invent” a generative story to explain the align-
ment. Hence, we use a binary classifier-based approach using a probabilistic model
directly predicting the likelihood of a link ai j between two nodes si and t j given
the features associated with these nodes. For simplicity we leave the structural na-
ture of the tree alignment problem aside for now. We will later discuss issues of
structured prediction and how we address link dependencies in our approach. In
the next section, we introduce the general model applied in the tree aligner.

2.1 A Log-Linear Link Prediction Model

Similar to related work on discriminative word alignment we base our model on
association features extracted for each possible alignment candidate. For tree align-
ment, each pair of nodes 〈si, t j〉 from the source and the target language parse tree
is considered and a score xi j is computed that represents the degree to which both
nodes should be aligned according to their features fk(si, t j,ai j) and correspond-
ing weights λk derived from training data. In our approach we use conditional
likelihood using a log-linear model for estimating these values:

P(ai j|si, t j) =
1

Z(si, t j)
exp

(
∑
k

λk fk(si, t j,ai j)

)

Here, the mapping of data points to features is user provided (see section 2.3) and
the corresponding weights are learned from aligned training data. As mentioned
earlier, we simplify the problem by predicting individual alignment points for each
candidate pair instead of aiming at structured approaches. Hence, we can train
our conditional model as a standard binary classification problem. Note that con-
textual features can easily be integrated even though first-order dependencies on
surrounding alignments are not explicitly part of the model. More details will be
given below in sections 2.4 and 2.6.



In our experiments we will use a standard maximum entropy classifier using
the log-linear model as stated above. One of the advantages of maximum entropy
classifiers is the flexibility of choosing features. No independence assumptions
have to be made and state-of-the art toolboxes are available with efficient learning
strategies. In this work, we apply the freely available toolbox Megam [2].

2.2 Structured Prediction

Tree alignment is a typical structured prediction problem. Treating links in iso-
lation as outlined above causes a lot of errors due to the existing dependencies
between link decisions. Therefore, applying a binary classifier alone and linking
according to the individual decisions is not a good idea. However, building a dis-
criminative predictor for the entire structure is not feasible due to the sparsity of the
data. Structured prediction is an active research area and various approaches have
been proposed incorporating various dependencies and standard machine learning
techniques. In our implementation we opt for a recurrent architecture [3] using
history-based features and a sequential classification process. We experimented
with two different directions: top-down and bottom-up link classification where
the latter gave us better results. Therefore, we will only report these results.

The idea behind this strategy is simple: previous decisions of the global clas-
sifier are used as input features for coming decisions. Training is simple as link
decisions are readily available and the classifier can learn directly using those fea-
tures. In classification, we have to use a sequential setup in order to obtain history
features. In the bottom-up strategy we start with predicting links for leaf nodes
moving up towards the tree root. Here, we assign history features to be taken from
the child nodes.

Another way of incorporating structural dependencies in prediction is to use a
simple greedy alignment strategy. In tree alignment, it is common to restrict the
process to one link per node. Therefore, we can define a greedy best-first align-
ment strategy to account for competition between link candidates [12]. Further
constraints can be applied to guide the alignment even further. For example, well-
formedness criteria can be defined to reject certain links [17]. These constraints
basically add the following restriction: Descendants/ancestors of a source linked
node may only be linked to descendants/ancestors of its target linked counterpart.
We apply both, a greedy best-first strategy and well-formedness constraints. In
addition, we also introduce a constraint to restrict alignments in such a way that
non-terminal nodes are aligned to non-terminal nodes and terminal nodes to termi-
nal nodes only.

2.3 Basic Alignment Features

Log-linear models are very flexible with regard to the feature functions that can be
used. Any real-valued function can be used without considering their dependencies
with each other.



Zhechev & Way [17] introduce lexical probabilities to be used in unsuper-
vised tree alignment. They are combined into an alignment score γ which is com-
posed out of so-called inside scores (α(sl|tl), α(tl|sl), ) and outside scores (α(sl|tl),
α(tl|sl)). We use a slightly modified definition of inside/outside scores which in-
volves the selection of the maximum lexical score for each token instead of an
averaged sum over all possible word connections (xi ≥ x denoting dominance):

γ(sl, tl) = α(sl|tl)α(tl|sl)α(sl|tl)α(tl|sl)
α(x|y) = ∏

xi≥x
max jP(xi|y j)

In our experiments this modification gave us a better performance and intuitively
this is also more appealing. Other features can be derived directly from an existing
word alignment. We define a feature measuring the proportion of consistent links
among all relevant links Lxy involving either source sx or target language words ty
dominated by the current tree nodes (si and t j).

align(si, t j) = ∑
Lxy

consistent(Lxy,si, t j)/∑
Lxy

relevant(Lxy,si, t j)

consistent(Lxy,si, t j) =
{

1 if sx ≥ si∧ ty ≥ t j

0 otherwise

relevant(Lxy,si, t j) =
{

1 if sx ≥ si∨ ty ≥ t j

0 otherwise

Any sub-sentential alignment can be used with the definition above. In our ex-
periments we apply the Viterbi word alignments produced by Giza++ [13] using
the IBM 4 model in both directions, the union of these links and their intersection.
This gives us four separate feature functions using the definition above.

Another word alignment feature is defined for pairs of terminal nodes. It is
simply a binary feature being set to one if and only if both nodes are linked in the
underlying word alignment. This is useful if terminal node alignment is included
in the tree alignment model as it is in our initial experiments.

It is also possible to define a number of features that are independent of external
tools and resources. Using the relative position of each node in the parse tree
we define two features: tree-level similarity (tls) and tree span similarity (tss).
For the former we use the distance to the root node (d(si,sroot) resp. d(ti, troot))
and normalize this distance with the size of the tree (maximum distance between
any node and the root node). For the latter we compute the relative “horizontal”
position of a node based on the span (sstart → send) of the entire subtree which is
rooted in that node (si). This position is than normalized by the length (= number
of leaf nodes) of the sentence (S). Furthermore, we define a leafratio feature that
measures the difference in subtree spans (in terms of number of leaf nodes within
that subtree). The formal definitions of these tree features are as follows:



tls(si, t j) = 1−abs
(

d(si,sroot)
maxxd(sx,sroot)

− d(ti, troot)
maxxd(tx, troot)

)

tss(si, t j) = 1−abs
(

sstart + send

2∗ length(S)
− tstart + tend

2∗ length(T )

)

leafratio(si, t j) =
min(|leafnodes(si)|, |leafnodes(t j)|)
max(|leafnodes(si)|, |leafnodes(t j)|)

Finally, we also define features derived from the annotation. Intuitively, category
labels (for non-terminal nodes) and part-of-speech labels should be valuable indi-
cators for a possible link. These features are simply binary features which are set
to one if the particular label combination is present and zero otherwise.

2.4 Contextual Features

So far we only considered features directly attached to the candidate nodes. How-
ever, tree nodes are connected with other nodes in the tree structure and their align-
ment may as well depend on features of neighboring nodes. Therefore, features
from surrounding nodes should be considered as well. Using the tree structure
we can extract the same features as described above from other nodes connected
to candidate nodes. For this we define the following functions that can be used
to move within the tree when extracting features: parent - move to the immedi-
ate parent and take the feature values from this node; child - compute the average
feature value for all child nodes; sister - compute the average feature value for all
nodes with the same parent node. These functions can be applied recursively. For
example, applying parent twice will force the feature extraction process to move
to the grand-parent node (if this node exists). Note that these functions can be ap-
plied to either source or target language tree or both. In this way we have many
possibilities to explore contextual features. Proper feature engineering is necessary
to define useful templates.

2.5 Complex Features

Some features may be correlated in a non-linear way. To account for those it is
possible to create complex features. Any of the features above (also contextual
ones) can be combined in such a way that they form a new feature function with
their values combined. In our approach we simply compute the product of the
feature values. Other types of combinations might be possible as well. This gives
us a combinatorial explosion of possible features and careful feature engineering
is necessary again to select valuable ones. Furthermore, complex features are even
more exposed to sparseness problems. Nevertheless, various combinations lead to
significant improvements as we will see in our experiments.



2.6 Link Dependency Features

The last category of features refers to history features mentioned earlier in our
discussion on structural prediction. In our implementation we use two types of
history features: (1) The children_links feature is the number of links between
direct child nodes of the current node pair. (2) The subtree_links feature is the
number of links between all children of the current node pair. Both values are
normalized with the maximum number of child nodes on either source or target
side. In classification, only the prediction likelihood is used for estimating these
feature values. In other words, we use “soft counts” instead of counting actual
links. Classification can then be done in a bottom-up fashion before applying the
greedy best-first search in the final step.

3 Alignment Results

During the development of our tree aligner we applied the Smultron treebank [7]
for evaluating its performance with various strategies and feature sets. Smultron
includes two trilingual parallel treebanks in English, Swedish and German. The
corpus contains the alignment of English-Swedish and German-Swedish phrase
structure trees from the first two chapters of the novel “Sophie’s World” by Jostein
Gaarder and from economical texts taken from three different sources. The align-
ment has been done manually using the Stockholm Tree Aligner [11]. The align-
ment includes good links and fuzzy links. We will use both but give them different
weights in training (good alignments get three times the weight of fuzzy and nega-
tive examples). We mainly worked with the English-Swedish treebank of Sophie’s
World which includes roughly 500 sentences per language (6,671 good links and
1,141 fuzzy links). In our experiments we used the first 100 aligned parse trees for
training and the remaining part for testing.

For evaluation we use the standard measures of precision, recall and balanced
F-scores as they are used in word alignment evaluation. Due to the distinction
between good and fuzzy alignments we compute values similar to word alignment
evaluation scores in which “sure” and “possible” links are considered (S refers to
the good alignments in the gold standard and P refers to the possible alignments
which includes both, good and fuzzy links; A are the links proposed by the system):

Precision =
|P∩A|
|A|

Recall =
|S∩A|
|S|

F =
2∗Precision∗Recall

Precision+Recall

The upper part of table 1 summarizes the results for different feature sets when
running the aligner on our development corpus. The alignment results are very
promising. We can see that adding features consistently helps to improve the per-
formance. The advantage of a discriminative approach with a rich feature set can



settings Precision Recall F
lexical features 64.89 51.00 57.11
+ tree features 56.80 60.70 58.68
+ alignment features 62.94 62.83 62.88
+ label features 77.20 74.44 75.79
+ context features 79.77 75.66 77.66
train=novel, test=economy 81.49 74.76 77.98
train=economy, test=novel 77.67 75.04 76.33

Table 1: Results for different feature sets (top) and textual domains (bottom).

be seen when comparing our results with the performance of an unsupervised tree
aligner. Running the subtree aligner described in [17] on the same data set yields
an F-score of 57.57% which is similar to the scores we obtained when using the
same features only. When using a better model for estimating lexical probabili-
ties (more data: Europarl+SMULTRON) the performance improves only slightly
to about 58.64%. We, can see that the additional features and the optimization
of their contributions through machine learning has a strong positive effect on the
performance. A drawback of supervised techniques is that we have to drop the
generality of the unsupervised approach and require aligned training data to build
language pair specific models. Furthermore, there is a risk of overfitting. In order
to test the flexibility of our approach we ran several cross-domain experiments us-
ing the two domains present in the Smultron treebank. The results are presented in
the lower part of table 1. As we can see there is only a slight drop in performance
when training on a different textual domain. However, we still have reasonably
high accuracy which is certainly encouraging especially considering the effort of
human annotation necessary when preparing appropriate training data.

Finally, we also looked at the training curves with varying amounts of training
data. For this we used about a third of the corpus (2667 links) for testing and
trained on parts of the remaining data. Figure 1 shows the impact of training size
on F-scores for three feature settings.

We can clearly see that the aligner yields a high performance already with little
amounts of training data. Depending on the features the training curve levels out
already at training sizes way below 100 sentence pairs. This is especially apparent
for the settings that include word alignment features. Their values bear a lot of
positive link evidence on their own and corresponding weights do not need to be
adjusted very much. Other features such as the binary label-pairs require larger
amounts of training examples (which is not very surprising). However, the align-
ment performance does not seem to improve significantly after about 128 sentence
pairs even with those features included (see, for example, “no wordalign features”
in figure 1).
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Figure 1: Training curve for various amounts of training data

4 Scaling Up

4.1 Creating a New Alignment Model

After tuning and testing our tree aligner as described above the next step is to apply
the optimized model to large parallel treebanks. Unfortunately, to our knowledge
no tree-aligned training corpus is available for the language pairs we are interested
in (English-Dutch and French-Dutch). Therefore, the first step is to create a train-
ing corpus for our purposes. Fortunately, from our experiments we can conclude
that only a small amount of aligned sentences is necessary to obtain reasonable
results. Therefore, we decided to create a small aligned treebank to start with. In
particular, we aligned 100 sentences from the English-Dutch parallel Europarl cor-
pus [8] using the Stockholm Tree Aligner. We decided to follow the guidelines as
proposed by [14] in the context of the Smultron parallel treebank project.

In order to speed up the process we decided to leave out all links between ter-
minal nodes. This reduces the annotation effort dramatically not only in terms of
number of links that have to be drawn but also in terms of alignment decisions.
There are usually a lot of difficult decisions when aligning words with each other
as we know from the literature on statistical MT and alignment competitions. A
drawback is, of course, that we will miss this information when learning our align-
ment model. However, we believe that we will not lose a lot in performance if we
take links between terminal nodes directly from existing word alignments.

For aligning the non-terminal nodes we decided to follow some guidelines as
proposed by [14] in the context of the Smultron parallel treebank project:

• Align as many nodes as possible.

• They must be translatable to each other.

• Grammatical forms do not need to fit.



• Approximate translations are accorded fuzzy links. For example, one side
may contain more general or more specific information.

• Pronouns are not linked to full noun phrases.

• Nodes with extra information that is missing and required on the other side
are not linked. This ensures that a sentence is not linked to a verb phrase, for
example.

• We only allow 1:1 links between non-terminal nodes.

We modified our implementation such that it can be run to consider only non-
terminal nodes in training and alignment which is very straightforward. The soft-
ware is also able to recognize existing links when aligning trees which is impor-
tant when adding non-terminal links to a word-aligned parallel treebank. This is
especially important for proper handling of history features and checking well-
formedness criteria. Using these settings we trained a new model on our tiny set
of training examples. Note that we used alignment features (for example, lexical
probabilities) from a GIZA++ model trained on the entire Europarl corpus in order
to get reliable estimates.

We also performed a sanity check with our newly created training corpus in
order to see if the expected performance can be reached. For this we used 80
aligned sentences for training and the remaining ones for testing. This gives us a
good idea about the expected outcome although the test set is way too small to give
reliable evaluation scores. The results are as follows:

Precision 73.20%
Recall 86.89%
F 79.46%

As we can see, the scores are quite high especially in recall. This is partially
due to the nature of our training material in which we prefer accurate links and
tried to avoid fuzzy links as much as possible (in order to reduce the number of
unreasonable/questionable links). Note that we only consider non-terminal nodes
now in this evaluation. From this little experiment we may conclude that we can
expect reasonable alignments even for our new language pair and a different textual
domain.

4.2 Aligning Europarl

We are now able to align the entire Dutch-English part of the parallel Europarl
corpus with the alignment model created as described above. For this we parsed
both sides of the corpus with existing tools (Alpino for Dutch and the Stanford
Parser for English) and converted the output of these parser to Tiger XML, which
is used in our tree aligner implementation. The advantage of Tiger XML is that
it supports even non-projective structures and it is also used by the Stockholm
Tree Aligner which enables us to visualize alignment results easily (see figure 2).



Moreover we can even manually correct automatic alignments in this way which
might be a valuable feature in future research.

Figure 2: Automatic tree alignments visualized by the Stockholm Tree Aligner

After these pre-processing steps we proceeded in the following way: First we
added all word alignments from the intersection of the two Viterbi alignments cre-
ated by GIZA++. They were classified as “good” links assuming that they are very
reliable. Next, we added links from the word alignment using the “grow-diag”
symmetrization heuristics [9]. These links are less reliable and therefore were
tagged as “fuzzy”. Finally we ran the tree aligner to add non-terminal nodes to the
parallel treebank.

There are some consequences of this alignment pipe-line architecture espe-
cially in combination with the well-formedness criteria. Word alignments often
cause violations of these constraints and block the possibility of adding links on
higher nodes. One solution to this problem is to disable the well-formedness check
between terminal and non-terminal nodes and to allow violations at this level.
However, this is not really desirable. Therefore, we use another mode in which
existing word links compete with new incoming links in the same way as usual.
For this we need to specify link scores for existing word alignments. In our ex-
periments we simply defined arbitrary fixed scores (0.8 for links coming from the
intersection and 0.4 for links coming from the grow-diag heuristics). As a con-



sequence, certain word alignments may disappear from the final result if they are
overruled by other stronger links that do not meet the constraints with these partic-
ular word alignments (which is probably a good thing).

Using this setup we aligned the entire Dutch-English Europarl corpus. Note
that we only apply the aligner to one-to-one sentence alignments and that some
sentences were dropped due to parsing time-outs. However, we obtained a sub-
stantial amount of machine-aligned parse trees (see table 2).

good (p > 0.5) fuzzy all
Europarl English-Dutch 20,109,174 5,205,048 25,314,222

non-terminals 6,999,851 3,821,970 10,821,821
terminals 13,109,323 1,383,078 14,492,401

links/sentence 19.01 4.92 23.93

Table 2: Links in 1,057,875 aligned parse trees from Europarl Dutch-English

5 Conclusions

We have presented a discriminative tree aligner that can be trained on small amounts
of hand-aligned training data using a rich feature set. With this tool we achieve
state-of-the-art performance in tree-to-tree alignment that can be used to align par-
allel treebanks on a larger scale. We are currently aligning large automatically
parsed parallel corpora which we will use as a resource in the development of a
syntax-oriented data-driven machine translation system.
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