
Dynamic Propbanking with Deep Linguistic
Grammars

António Branco, Sara Silveira, Sérgio Castro, Mariana Avelãs,
Clara Pinto and Francisco Costa

University of Lisbon
http://nlx.di.fc.ul.pt

Abstract

In the development of annotated corpora with deep linguistic represen-
tations, the category to be assigned to each markable (i.e. the fully fledged
grammatical representation of each sentence) is so complex that it cannot be
safely constructed manually and the annotation cannot be performed without
some supporting application, viz. a computational grammar. This paper dis-
cusses and present solutions for the adaptation of deep linguistic grammars
as supporting tools in the construction of dynamic propbanks. It reports on
the results of an experimental study with a pilot application of this approach
to propbanking. Estimated scores for inter-annotator agreement and for de-
velopment effort are presented.

1 Introduction

Stochastic parsers rely on the availability of annotated corpora both for their train-
ing and their evaluation. Such corpora may encompass linguistic information of
varying level of complexity, ranging from relatively shallow representation of syn-
tactic constituency (e.g. Penn treebank [12]) to deep representation of fully fledged
grammatical analysis that includes advanced semantic representation (e.g. Red-
woods HPSG treebank [14]).

The expected trend is that the corpora supporting grammatical analysis will
be language resources bearing an increasingly sophisticated linguistic information
(Treebanks, PropBanks, LogicalFormBanks, . . .). This is in line with the trend
observed in natural language processing in general, where annotated corpora that
have been developed address issues well beyond the initial part-of-speech level,
including issues from the realm of semantics (e.g. corpora annotated with coref-
erence links [11]) and from the realm of discourse (e.g. corpora annotated with
dialogue acts tags [7]).

To develop corpora that are annotated with deep linguistic representations, the
fully fledged grammatical representation to be assigned to each sentence is so com-

plex and so specific that it cannot be reliably crafted manually piece by piece and
the annotation cannot be performed without some supporting application. Such
annotation environment has to integrate at least a computational grammar to con-
struct representations that cannot be done by hand, and a user interface to display
the parses available and to allow the annotator to selected one of them (e.g. the
[incr tsdb()] application [13]).

Propbanks are treebanks whose trees have their constituents labeled with se-
mantic role tags. In other words, propbanks are annotated corpora that result from
the extension of the annotation associated to the sentences in treebanks by means of
an extra set of tags for semantic roles. The seminal work in this area is due to [15]
and the semantic roles adopted for arguments were ARG1, . . . , ARG4, while the
semantic roles used to classify modifiers include tags such as LOC, TMP, MNR,
etc.

The construction of propbanks thus offers a new area for the application of deep
linguistic grammars to the development of language resources. It also presents
specific challenges that need to be addressed.

While word sense disambiguation is a task of semantic categorization for words,
propbanking can be seen as a task of semantic categorization for phrases. At their
core, tasks of semantic categorization involve semantic ambiguity resolution and
deep linguistic grammars are known not to be the most suitable approach to handle
semantic categorization tasks. Moreover, any deep linguistic grammar that might
be used to support (at least the initial stages of) the construction of a propbank
could not rely on stochastic models that would allow it to resolve semantic role
assignment, as the training data needed to obtain these models are the materials
that are being constructed with the help of the grammar.

An immediate move to ponder would be to extend the grammar so that the
different parse trees it produces for a given sentence have their constituents labeled
with the different possible semantic roles. The task of propbanking would then
be similar to the task of treebanking. The human annotator would go through the
parse forest generated and select the appropriate tree, with the appropriate semantic
roles in the appropriate constituents. However, this turns out not to be a practically
viable option as it would induce an exponential explosion of the size of the parse
forest and would severely hurt the efficiency of the grammar.

An alternative to this one-step approach is a two-phase approach. In a first
phase, the grammar is used to get at the correct tree for the sentence at stake. Once
that representation is selected, in a second phase, its phrases are tagged by the
human annotator. This is a scenario that avoids the explosion of the parse forest that
would result from the one-step approach. And very importantly, this is a scenario
that still allows exploring the contribution of the grammar for propbanking to the
maximum extent possible without spurious overgeneration.

The grammar can be used not only to construct the underlying syntactic tree but
also to advance the assignment of semantic roles: if its deep linguistic representa-
tion is “deep” enough to include the predicate-argument structure of the sentence,
the grammar can be used to correctly assign the role labels for its constituents that

are arguments, viz. ARG1 to ARGn. By the same token, it can be used to iden-
tify the phrases that are modifiers, and hence to automatically select only those
constituents that still need to be further manually inspected and specified for their
semantic role.

In this paper we report on the adoption of this approach to propbanking and
describe the solutions we developed in order to construct a propbank based on a
deep linguistic grammar. This involved using an existing deep linguistic grammar
and using available tools for the creation of dynamic treebanks, that accommodate
the fact that the grammar may evolve and its output may be altered and refined.1

Accordingly, in this paper we will also describe the solutions developed for the con-
struction of a dynamic propbank that is supported by a grammar that may evolve
and be refined along time.

Section 2 reports on the adaptation of a deep linguistic grammar to the task
of semi-automatic propbanking and of the tool for dynamic treebanking. In Sec-
tion 3, we describe the annotation environment developed to assist in the manual
completion of a dynamic propbank. Section 4 describes a pilot experimental study
of the practical viability of this environment, and Section 5 presents the concluding
remarks.

2 Semantic role tagging by the grammar

The deep linguistic grammar used for semi-automatic propbanking was LXGram
[5, 6, 4, 3]. This grammar is developed under the grammatical framework of
HPSG-Head-Driven Phrase Structure Grammar [16, 17] and uses MRS-Minimal
Recursion Semantics [10] for the representation of meaning. Its implementation is
undertaken with the grammar development environment LKB-Linguistic Knowl-
edge Builder [9] and the LinGO Grammar Matrix version 0.9 [2] was used as the
initial code upon which the grammar is being built.

The evaluation and regression testing of this grammar is done via the applica-
tion [incr tsdb()] [13] that works in tandem with the LKB. Once the sen-
tences are parsed, they are manually disambiguated using this profiling environ-
ment, which can then be used to export into text files several views of the syntactic
and the semantic analyses obtained by the grammar (e.g. parse trees, feature struc-
tures and semantic representations).

As this is an HPSG grammar, there are no explicit categories like Sentence,
Noun Phrase, etc. in the grammatical representation. Instead there are feature
structures that describe and stand for such categories. The LKB environment,
however, has a visualization device for grammatical representations that permits
to display tree views where these categories can be made to appear. There are
specific configuration files for this device where it can be stated what feature struc-
tures should be mapped to what symbols that appear in the nodes of the syntax

1We are using the notion of “dynamic” annotation of corpora (for treebanking, propbanking, etc)
in the sense worked out for the Redwoods Treebank in [14].

tree displayed. For instance, a constituent with a HEAD feature of the type verb
and a SUBJ feature with the empty list as its value is categorially a sentence, and
it is possible to configure the visualization device for the corresponding tree node
to appear with the label S. This is the key facility we explored in this grammar
development environment to make semantic role labels appear in the appropriate
constituents in the parse tree.

Some of the semantic role labels that are used in PropBank can be obtained
from features that describe the semantics of the sentence, namely those used to tag
the subject and the complements of predicators, ARG1 to ARGn.

For instance, a verb that is associated to a semantic relation whose first argu-
ment is that verb’s subject will comply with a constraint like the following:

SYNSEM|LOC

CAT|VAL|SUBJ

〈[
LOC|CONT|HOOK|INDEX 1

]〉
CONT|RELS

{[
ARG1 1

]}

This is the underlying piece of information that can be used to assign semantic
role labels. Although this piece of information is visible in the feature structures
for predicators, it is not visible in the feature structures for the actual phrases that
are to be labeled. For this reason, the grammar was expanded with an extra feature
(ROLE-LABEL) marking the semantic role label of constituents. In this example,
with this sort of verbs, another constraint was added:

SYNSEM|LOC

CAT|VAL|SUBJ

〈LOC

[
ROLE-LABEL arg1
CONT|HOOK|INDEX 1

]〉

CONT|RELS
{[

ARG1 1

]}

A quite straightforward way to include such semantic role labels in the output

tree is by simply adjusting the mapping from feature structures to node labels in
the visualization device so that the information contained in the semantic represen-
tations is rendered visible in the tree exported.

For the sake of illustration, Figure 1 presents an example of a parse tree ex-
ported. All constituents have a category label. The relevant constituents also have
a tag describing their syntactic function (SJ for subject, DO for direct object, IO for
indirect objects, OBL for oblique complements, PRD for predicative, M for modi-
fier), separated from the category label by a dash. Also separated by a dash, a third
tag describes the semantic role that can be obtained from the semantic representa-
tions derived by the grammar, ARG1,. . . , ARGn for subcategorized arguments, M
for modifiers.

The ARG1,. . . , ARGn tags are similar to the same tags used in PropBank, but
note that PropBank starts at ARG0 whereas we start at ARG1. The M is here a
portmanteau tag that covers all semantic roles that are possible for modifiers. It
corresponds to PropBank tags like LOC, TMP, MNR, etc. As mentioned above,
producing these more specific tags by the grammar is not practically viable. Our
approach to propbanking consists in manually refining the M tag in a second phase,
that is described in the next section.

(S (PP-M-M (P (Para))
(S (NP-SJ-ARG1 (D-SP (a))

(N (delegação)))
(VP-C (V (evitar))

(NP-DO-ARG2
(D-SP (um))
(N’ (N (conflito))

(AP-M-M (A (armado))))))))
(S (PP-M-M (P (em))

(NP-C (N (Maio))))
(S (NP-SJ-ARG1 (D-SP (a))

(N (ONU)))
(VP (V’ (V’ (V (enviou))

(ADVP-M-M (ADV (rapidamente))))
(NP-DO-ARG2 (N (tropas))))

(PP-OBL-ARG3
(P (para))
(NP-C (D-SP (a))

(N (fronteira))))))))

Figure 1: Parse tree exported from [incr tsdb()] and decorated with seman-
tic role labels. The sentence translates into “For the delegation to avoid an armed
conflict, in May the UN quickly sent troops to the border”.

3 Completing semantic role tagging

After the propbanking is advanced in a first phase by the grammar, a completion
step follows that consists in the manual specification of the occurrences of the
portmanteau tag M in terms of one of the semantic roles available for modifiers in
the tagset, LOC, TMP, MNR, etc.

Before proceeding with the descritpion of the second phase of the propbank-
ing, it is worth noting that for the two step annotation methodology we are reporting
on, there is nothing essential in the usage of the HPSG framework, the LKB de-
velopment environment or an MRS semantic representation. Any deep linguistic
grammar is suitable to support the first, automatic phase described in the section
above provided it delivers deep enough representations, that include at least the
semantic roles for arguments.

Turning now to the second phase of the propbanking, this manual annotation is
prepared by two tools. A converter from trees into an annotation format compatible
with the annotation interface, and a reverser tool for the symmetric operation.

A third tool is also necessary to support the construction of a dynamic Prop-
bank. The development of this annotated corpus is based on a computational gram-
mar which is itself likely to be under development or refinement and to evolve. It
should thus be expected that a sentence that received a certain analysis under ver-
sion n of the grammar may receive a different tree under the subsequent version
n+1. This change in grammatical analysis is likely to have an impact on the an-
notation produced with the support of the grammar in version n and previously
stored in the Propbank. Therefore, a third tool is necessary to support this dynamic

Figure 2: Annotation interface

propbanking.
These tools are described in the next subsections.

3.1 Exporting trees to and from an annotation interface

The annotation interface is based on a basic yet very efficient and powerful enough
technology in view of the manual task it is aimed at supporting. A set of sentences
to be annotated is presented in a spreadsheet file, with each sentence in a different
sheet. The constituents that need to be tagged are displayed in the first column,
each constituent in a separate cell. The semantic role labels that were assigned by
the grammar are displayed in the second column, aligned with the corresponding
constituents. The third column is left blank and its cells in the lines with M in
the second column offer a drop down menu from which it is possible to pick the
semantic role label with which to specify M.

These spreadsheets are created by the converter tool that takes as input an ex-
ported version of the sentences treebanked with [incr tsdb()]. For each suite
of treebanked sentences, a spreadsheet is created with as many sheets as sentences
in that suite. If a given sentence happens not to have received a parse, its sheet
only contains its identification number and that sentence. If in turn the sentence
received a parse in the treebank, its tree is processed and for each node with a syn-
tactic function that ends in -SJ, -DO, -IO, -M, -OBL, or -PRD, a new line in the
sheet is printed.

The sentences that have a parse, i.e. whose propbanking needs to be finalized,
are identified by a designated format for the name of the sheets containing them.
The annotator only needs to look for those sheets with the name in that format,
since only there actual annotation is required to be performed.

As mentioned above, each line has cells automatically filled in, and others to be
filled in by the annotator. Each line includes cells with (A) the syntactic category
and grammatical function, (B) the semantic role assigned by the grammar, (C)
the “level two” of the semantic annotation—the cell to be filled in by the human
annotator—, (D) the constituent being tagged, (E) the annotator’s observations—

(S (PP-M-PNC (P (Para))
(S (NP-SJ-ARG1 (D-SP (a))

(N (delegação)))
(VP-C (V (evitar))

(NP-DO-ARG2
(D-SP (um))
(N’ (N (conflito))

(AP-M-PRED (A (armado))))))))
(S (PP-M-TMP (P (em))

(NP-C (N (Maio))))
(S (NP-SJ-ARG1 (D-SP (a))

(N (ONU)))
(VP (V’ (V’ (V (enviou))

(ADVP-M-MNR (ADV (rapidamente))))
(NP-DO-ARG2 (N (tropas))))

(PP-OBL-ARG3
(P (para))
(NP-C (D-SP (a))

(N (fronteira))))))))

Figure 3: Parse tree after manual role labeling. Newly introduced tags are -PNC,
-PRED, -TMP and -MNR.

free text by the annotator––, and finally (F-G) the begin and the end positions of
that phrase in the sentence.

When the propbanking is finalized, the sentences are reverted to the original
tree representation, now extended with the newly assigned tags for the semantic
roles of modifiers.

This operation is ensured by a reverting tool. This tool parses the data in the
sheets of the spreadsheet and, guided by the information in the last column of the
sheets on the initial and final position of the phrase, recombines the information
stored there with the original information about the parse tree of the sentence. The
outcome is a set of restored sentence trees like the one displayed in Figure 1 with
the only difference that now level 2 tag M does not occur in them, as in Figure 3.
Each one of its occurrences in the original tree generated by the grammar was
replaced by the tag with which it was manually specified.

Note that this annotation interface is very flexible and permits to accommodate
tagsets other than the one adopted here, which replicates the tagset of the English
PropBank in [15]. It permits to specify not only the modifiers with sub-semantic
roles LOC, TMP, MNR, etc., but also the arguments with sub-semantic roles like
AGENT, PATIENT, EXPERIENCER, etc. One just needs to add extra drop down
menus with the required range of tags in the third column cells of the lines already
containing the ARG1,..., ARGn tags.

This is thus an annotation interface that can very easily be adapted for arbi-
trarily complex, multi-layer hierarchical tagsets of semantic role labels, including
those that may be extended and get more complex along the development of refined
versions of the propbank.

3.2 Supporting the construction of a dynamic propbank

An annotated corpus whose construction is based on a grammar that evolves with
time has a dynamic nature. As the grammar gets extended or refined in each new
version, the composition of the corpus is likely to evolve as well. For instance,
some sentences that got a parse with a previous version n and were annotated with
that parse may have no parse in version n+1; sentences that received a parse with
version n of the grammar may have that parse tree altered in version n+1; and sen-
tences that had no parse with version n may receive a parse in version n+1. As the
grammar evolves, sentences may thus be dropped from the annotated corpus, may
have their annotation changed, or new sentences may enter the annotated corpus.
Of course, many annotated sentences in the treebank will be kept unchanged in the
new versions.

Given the annotation environment adopted for propbanking, in order to mini-
mize the manual effort spent, the two cases that are important to handle in a version
n+1 of the propbank (supported by version n+1 of the grammar) are the case of
the sentences that have their parse trees changed and the case of the new anno-
tated sentences that entered the treebank. For the remaining propbanked sentences,
whose annotation was not altered, they just need to be automatically transfered
from version n to version n+1 of the propbank.

To support this dynamic propbanking, a tool was developed that performs the
required comparisons between the annotated sentences in version n of the prop-
bank and the outcome of version n+1 of the grammar applied over the pool of the
sentence to be propbanked. Moreover, it singles out the sentences that need to re-
ceive the attention of the human annotators and transfers the remaining annotated
sentences from version n to version n+1.

This comparator tool receives as input the spreadsheets Sn, of the previous ver-
sion of the propbank, and the spreadsheets Sn+1, generated on the basis of version
n+1 of the grammar. For each pair of spreadsheets containing the same suite of
sentences, every sentence will be checked.

If a sentence maintains its parse tree from version n to version n+1, its prop-
bank annotation will be maintained and transfered from Sn to Sn+1. Thus, the
annotators do not have to re-annotate these sentences.

If in turn a sentence did not have a parse in version n and received a parse
in version n+1, its sheet is signaled in the spreadsheet by means of a designated
format for its name. Also, if a sentence receives a parse tree in version n+1 that is
different from the parse tree in Sn, its sheet is also signaled. Additionally, for the
sake of documentation, the parse tree and its semantic role labels in Sn are copied
into Sn+1 to a position in the corresponding sheet below the new parse tree whose
propbanking is to be completed by the annotator.

4 Propbanking with a deep linguistic grammar

The practical viability of the propbanking environment just described was tested in
a pilot experimental study. In this study, this environment was used to propbank
807 sentences (5,457 tokens overall; longest sentence with 34 words), extracted
from a corpus of newspaper texts with a total of 350 Ktoken and 12 Ksentence [1].
This is an annotated corpus accurately annotated with part-of speech and morpho-
logical information and these annotations were used to help constrain the grammar
search space.

The propbanking was performed under the annotation methodology consist-
ing in a double blind annotation followed by adjudication. The annotation was
produced by two annotators, who hold a degree in the Humanities with formal
training in Linguistics and who have more than one year of experience in corpus
development and treebanking. The adjudication was done by a third element of the
team, who holds a degree in Linguistics and was the main coder of the grammar
used.

The 807 sentences (5,457 tokens) were propbanked in 10 hours by the anno-
tators, without any previous period of adaptation to the task in this study. This
indicates that a rate of at least 80 sentences (550 tokens) propbanked per hour
can be expected, provided these sentences had been previously treebanked in this
overall environment for corpus development. A propbank with a typical size of 1
Mtoken could thus be expected to be produced out of a deep linguistic treebank in
about 2,000 hours, with an estimated 100 person month of effort for a double blind
annotation with adjudication.

This study also allowed getting a first indicative assessment of the level of
reliability of the data produced by the annotators, before adjudication, that can
be expected for a proposition bank produced under this methodology. The inter-
annotator agreement coefficient used was Cohen’s κ coefficient [8], calculated by
the formula

κ =
Ao −Ae

1−Ae

where Ao is the observed agreement, and Ae is the expected agreement. Ex-
pected agreement is the sum of the expected agreement for every tag, where the
expected agreement for each tag is the probability of the two annotators to as-
sign that tag by chance. The probability of one annotator assigning a given tag by
chance is the proportion of items actually assigned by that annotator with that tag.

The score for the inter-annotator agreement was 0.77 for an observed agree-
ment of 0.83 and an expected agreement of 0.27, calculated over a total number of
334 assigned tags (tokens).

5 Conclusions

Annotated corpora tend to include increasingly sophisticated linguistic informa-
tion. When developing treebanks with deep linguistic representations, the linguis-

tic information to be associated with each sentence is so complex that it cannot be
safely done manually and the annotation has to rely on some computational gram-
mar supporting it. In this paper we discussed how to extend the utilization of deep
linguistic grammars as supporting tools also for the annotation of propbanks.

In order to explore the contribution of the grammar for propbanking to the
maximum extent possible without hurting its efficiency, the propbanking environ-
ment studied was based on two phases. In a first phase, the grammar is used to
treebank the sentence. As the grammatical representations produced by the gram-
mar already include predicate-argument structures, this information was explored
to annotate the argument phrases with the semantic role labels ARG1,. . . ,ARGn
for arguments. In a second phase, the parse trees were converted to an interface
format that singled out the modifier phrases, whose propbanking still needs to be
completed by the human annotators.

As the grammar is typically an application that will be extended and refined
over time, the propbanking environment needs to be prepared to support the con-
struction of a dynamic propbank. This is achieved with the help of a comparison
tool that permits drawing the attention of the annotators only for the sentences
newly entered in the treebank.

This propbanking environment was tested in a preliminary experimental study.
In this study, though the annotators and the adjudicator were performing their tasks
for the very first time, without previous substantial training that could be gathered
after continued work, the results of this pilot study were very promising. They
suggest that, provided human annotators have been sufficiently exercised over a
large enough portion of corpus, this environment will support the propbanking of
over 80 sentences per hour and permits to expect a reliable level of inter-annotator
agreement, that will rise over 0.77 in terms of the κ coefficent. A corpus with
a large size of 1 Mtoken could thus be expected to be produced out of a deep
linguistic treebank with less than 100 person month of annotation effort with a
double blind annotation methodology.

References

[1] Florbela Barreto, António Branco, Eduardo Ferreira, Amália Mendes,
Maria Fernanda Nascimento, Filipe Nunes, and João Silva. Open resources
and tools for the shallow processing of portuguese: the TagShare project. In
Proceedings of the 5th International Conference on Language Resources and
Evaluation (LREC 2006), 2006.

[2] Emily M. Bender, Dan Flickinger, and Stephan Oepen. The Grammar Matrix:
An open-source starter-kit for the development of cross-linguistically consis-
tent broad-coverage precision grammars. In John Carroll, Nelleke Oostdijk,
and Richard Sutcliffe, editors, Procedings of the Workshop on Grammar En-
gineering and Evaluation at the 19th International Conference on Computa-
tional Linguistics, pages 8–14, Taipei, Taiwan, 2002.

[3] António Branco and Francisco Costa. Accommodating language variation
in deep processing. In Tracy Holloway King and Emily M. Bender, edi-
tors, Proceedings of the Grammar Engineering Across Frameworks Work-
shop (GEAF07), pages 67–86, Stanford, 2007. CSLI Publications.

[4] António Branco and Francisco Costa. Self- or pre-tuning? deep linguistic
processing of language variants. In ACL 2007 Workshop on Deep Linguistic
Processing, pages 57–64, Prague, Czech Republic, June 2007. Association
for Computational Linguistics.

[5] António Branco and Francisco Costa. A computational grammar for deep
linguistic processing of portuguese: LXGram. In Technical Reports Series.
University of Lisbon, Department of Informatics, 2008.

[6] António Branco and Francisco Costa. LXGram in the shared task ”compar-
ing semantic representations” of STEP2008. In Johan Bos and Rodolfo Del-
monte, editors, Semantics in Text Processing, pages 299–314, London, 2008.
College Publications.

[7] Jean Carletta, Amy Isard, Stephen Isard, Jacqueline C. Kowtko, Gwyneth
Doherty-Sneddon, and Anne H. Anderson. The reliability of a dialogue struc-
ture coding scheme. Computational Linguistics, 23(1):13–32, 1997.

[8] Jacob Cohen. A coefficient of agreement for nominal scales. Educational
and Psychological Measurement, 20(1):37–46, 1960.

[9] Ann Copestake. Implementing Typed Feature Structure Grammars. CSLI
Publications, Stanford, 2002.

[10] Ann Copestake, Dan Flickinger, Ivan A. Sag, and Carl Pollard. Minimal
Recursion Semantics: An introduction. Journal of Research on Language
and Computation, 3(2–3):281–332, 2005.

[11] Lynette Hirschman, Patricia Robinson, John Burger, and Marc Vilain. Au-
tomating coreference: The role of annotated training data. In Proceedings of
AAAI Spring Symposium on Applying Machine Learning to Discourse Pro-
cessing, 1997.

[12] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Build-
ing a large annotated corpus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330, 1993.

[13] Stephan Oepen and John Carroll. Parser engineering and performance pro-
filing. Natural Language Engineering, 6(1):81–98, 2000. (Special Issue on
Efficient Processing with HPSG).

[14] Stephan Oepen, Kristina Toutanova, Stuart Shieber, Christopher Manning,
Dan Flickinger, and Thorsten Brants. The LinGO Redwoods treebank: Moti-
vation and preliminary applications. In Proceedings of the 19th International
Conference on Computational Linguistics (COLING 2002), pages 1253–7,
Taipei, Taiwan, 2002.

[15] Martha Palmer, Dan Gildea, and Paul Kingsbury. The proposition bank:
A corpus annotated with semantic roles. Computational Linguistics, 31(1),
2005.

[16] Carl Pollard and Ivan Sag. Information-Based Syntax and Semantics, Vol. 1.
CSLI Publications, Stanford, 1987.

[17] Carl Pollard and Ivan Sag. Head-Driven Phrase Structure Grammar. Chicago
University Press and CSLI Publications, Stanford, 1994.

