
1 

 

The Backstage of Real-Time Streaming from Exchanges: 

Technological or Human Latency?1 

 

 

 

Version at August, 9 2014 

(working paper- do not quote without permission) 

 

 

 

 

Celso Brunetti 

Risk Analysis Section- Research and Statistics 

Board of Governors of the Federal Reserve System- Washington DC- US 

Tel. 001-202-452-3134  

celso.brunetti@frb.gov 

 

 

Caterina Lucarelli 

Faculty of Economics -Università Politecnica Marche- Ancona- ITALY 

Tel. 0039-071-2207196 

c.lucarelli@univpm.it 

 

 

Daniele Ripanti 

Data Warehouse Management -Università Politecnica Marche- Ancona- ITALY 

Tel. 0039-071-220-7060 

d.ripanti@univpm.it 

 

 

Sandro Tumini 

Faculty of Engineering -Università Politecnica Marche- Ancona- ITALY 

Tel. 0039-071-220-4810 

s.tumini@univpm.it 

                                                           
1 We are extremely grateful to Luca Bonacina and Giuseppe Rattà of IWBank, formerly Investnet 

spa, for constant support in both technical construction of the experiment and detailed description of 

TAL architecture. 



2 

 

Abstract 

This paper goes beyond the general assumption of reliability of high-frequency market data 

and investigates delays of a real-time data streaming. Speed and capacity conditions of trading 

systems are commonly considered attributes that are exogenous and stable, respect to the trading 

process, mainly depending on technological infrastructures (i.e., “technological” latency). Conversely, 

speed and capacity are largely influenced by the trading flow itself, and they might vary, also 

significantly, from time to time.  

This paper describes an experiment of an in-house data warehouse constructed in 2008 and 

2009, from the real-time streaming provided by a global player to a “geographically-distant” receiving 

server. By exploiting an optimal condition, in terms of telecommunications networks, we report 

experience for time-varying conditions of latency. We show that variations of these conditions are due 

to the overall trading process, mostly related to investors’ behavior, thus introducing the idea of a 

“human” latency. Realized volatility is a “universal” feature of the trading flow that consistently affect 

the effective latency for the six Stock Exchange analysed. Increase in the volatility of a stock intensifies 

the effective latency for a “geographically-distant” random trader. Market microstructure may play a 

role in controlling the effective latency risk. 

 

Keywords: technological latency; human latency; electronic trading; high-frequency 

market data 

 

I. Introduction 
 

Fast is good, more is better. Technological developments of capital markets have 

been enforcing these broad concepts at the best. Electronic order books allow continuous 

interactions of orders, competing for exploitation of information which is not uncompounded 

in prices, yet. Trading process becomes the natural arena of competition among investors, 

which aim at either using information, or capturing information from others.  

Speed and capacity conditions of trading systems are levers of competition of modern 

capital markets, in a liberal regulatory context. Both in the US and in Europe, regulation 

allows trading facilities to substitute regulated Exchanges, as in various forms of 

alternative venues (e.g., multilateral trading facilities, systematic internalizers, dark 

pools..). This competition has been originally thought to improve fairness and efficiency of 

securities marketplace; nevertheless it ended up in intensifying technological investments 

of trading venues that are continuously asked, by market participants, to improve the speed 

(i.e. the “fast”) and the capacity (i.e. the “more”) of their trading platform. Technological 

innovation largely supported infrastructure upgrades, with enhanced computer power in 

data storage and processing, as well as the growth of high-performance telecommunications 

networks, such as Multiprotocol Label Switching (MPLS), Wide Area Networks (WAN). 
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This paper sits within a variegated literature. From seminal financial economics 

literature, we consider the real-time trading process as a source of information itself, with 

implications on asymmetric information and adverse selection costs, as from Kyle, 1985; 

Glosten and Milgrom, 1985; Easley, O’Hara, 1987; Aslan, Easley, Hvidkjaer, O'Hara, 2011. 

From engineering and intelligent system literature (e.g. Kulkarni P. 2012), and in relation 

to the importance of the real-time trading process, we also assume that each trader, both 

human and not-human, follow an information-decision-action process, based on a 

reinforcement-learning scenario. The latency of a trading venue is the speed of sending 

messages to it and receiving back updated information (Hasbrouck and Saar (2013). 

Latency represents a competitive advantage that induces struggles among both trading 

venues and traders; it also brings about a renewed interest, in the financial economic 

literature, for evaluating the effect of technology on market quality and fairness, with still 

an ongoing debate (Hasbrouck and Saar, 2013; Menkveld and Zoican, 2014). 

According to this outstanding literature, speed and capacity conditions of a trading 

system are commonly assumed attributes exogenous and stable, respect to the trading 

process, mainly depending on technological infrastructures. These attributes indicate a 

technological latency. As an example, co-location services offered by Exchanges respond to 

the need of reducing any form of physical barrier that might interfere with flows of 

electronic trading.  

This paper goes beyond the technological meaning of latency, and investigates delays 

of the real-time data streaming that is practically delivered by Stock Exchanges. We 

investigate if the latency of a trading system is really exogenous and stable, or if it is 

influenced by the trading flow itself.  

In order to find evidence of a likely time-varying latency, and to uncover the causes 

of its variation, this paper describes an experiment of an in-house data warehouse 

constructed from the real-time streaming provided by a global player to a “geographically-

distant” receiving server, during the period 2008 and 2009.  

By exploiting an optimal condition in terms of telecommunications networks, we 

report experience for time-varying conditions of the speed of the data feed received by our 

random-geographically placed server. These speed variations are related to the trading 

process, and mainly due to investors’ behavior. This indicates that conditions of 

technological latency are often altered by conditions of human latency.  

 

II. Trading Process and Latency  

Trading process held in electronic order books has been largely considered the 

informational input for short terms investment strategies. Adverse selection issues arises 

when not-informed traders deal with informed investors, and the financial literature 
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largely investigates the behavior of market makers that are asked to trade even if they are 

not-informed. Asymmetric information among market participants is one of the most 

agreed theoretical paradigm in market microstructure (Kyle, 1985; Glosten and Milgrom, 

1985). Further literature focuses on probability of the informed trading conditional on the 

trading process (Easley, López de Prado, O’Hara, 2012; Andersen, Bondarenko, 2013).  

Recently, the development of AT and HF trading introduced the idea that market 

(passive) orders placed by HF traders transform these participants into market makers 

(Menkveld, 2013). “HF market makers generally do not make directional bets, but rather 

strive to earn tiny margins on large numbers of trades.” (Easley, López de Prado, O’Hara, 

2012, p.1458). This trading strategy generates a position risk, related to the adverse 

selection problem that arises when a market maker sets passive orders against informed 

traders2  

If the trading process is the informational input for trading strategies, it derives that 

traders and Stock Exchanges/trading venues are theoretically interconnected based on a 

learning process of information-decision-action, where information observed from the 

trading process is used to take decisions, either by humans or by machine (AT and HF 

traders), as described in Figure 1. 

Figure 1- Reinforcement-learning scenario 

 

Source: Kulkarni P. (2012) Reinforcement and Systemic Machine Learning for Decision Making, p.16 

An Agent (i.e a trader) tends to follow a reinforcement-learning scenario where, from 

observation of the Environment at time t (here the marked data of a Stock Exchange), she 

assumes a State st, mainly related to the experience of Reward rt; she processes this 

information and elaborates an Action at, that is going to change the Environment itself (in 

our case, the trading process, in terms of limit/market orders and trades). Action at is going 

to definitively alter the Environment, that generates a new set of conditions in terms of 

State st+1 and Reward rt+1. 

                                                           
2 Such a specific condition has been defined “flow toxicity”, and has been estimated with the volume-

synchronized probability of informed trading (VPIN, Easley, López de Prado, O’Hara, 2012). Even if 

the VPIN approach is still largely debated (e.g.  Andersen, Bondarenko, 2013), it confirms that quote 

and trade data, in terms of prices and volumes, is essential to deduce the presence of information in 

stock markets. 
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The elapse of time it takes the Environment to update the set of conditions, s and r, 

in Figure 1 is simply indicated as a “+1” (from t to t+1). Nonetheless, this delay is the issue 

of this paper. Moving from the engineering and intelligent system literature to financial 

literature, this elapse of time takes the name of “latency”,  as in Hasbrouck and Saar (2013, 

p1):  “ the time it takes to learn about an event (e.g., a change in the bid), generate a 

response, and have the exchange act on the response. Exchanges have been investing heavily 

in upgrading their systems to reduce the time it takes to send information to customers, as 

well as to accept and handle customers’ orders.”  

Technological innovation and infrastructure investments radically changed the 

trading marketplace and several papers observed the effect of technology on market 

quality. Some of them consider situations of technology failures, such as in relation to crashes, 
as in Andersen and Bondarenko (2014), but most of the studies analyse technology upgrades. 

An abundant literature refers to NYSE. For example, Easley, Hendershott and Ramadorai 

(2014) find significant impacts of technological upgrades on liquidity, turnover, and returns, 

from the NYSE computer improvements of early 1980’s.  Hendershott and Moulton (2011) 

observe the introduction of NYSE Hybrid market, that reduced the execution time for 

market orders from 10 seconds to less than one second. They find that this automation 

raised bid-ask spreads, due to increased adverse selection, and made prices more efficient. 

Similarly to this study, Riordan and Storkenmaier (2012) study the impact of a latency 

reduction for XETRA, the Deutsche Bourse trading system, on liquidity and price discovery. 

Their findings on bid-ask spread are opposite from Hendershott and Moulton (2011), but 

they justify this result because the NYSE Hybrid market implied both a latency reduction 

and further market structure changes. 

 

Theoretically, decrease in latency should improve efficiency of the reinforcement-

learning process of Figure 1, allowing agents to update their states and actions closely to 

any environmental change. This should support expectations for reduction of adverse 

selection problems among traders (i.e. reduction of bid-ask spread), as well as for lessening 

of noisy prices, thanks to a faster dissemination of information. Nevertheless, these overall 

improvements in market quality are reasonably expected if latency conditions were the 

same for every trader and constant along time. On the contrary, it is manifest that human 

ability to respond to environmental changes are “physically” lower than machines’ one. 

Hasbrouck and Saar (2013, p.1) define low-latency strategies, i.e. high frequency trading, 

those “strategies that respond to market events in the millisecond environment”; this implies 

that “computer algorithms respond to each other at a pace 100 times faster than it would 

take for a human trader to blink”.  

Therefore, new sources of asymmetries and adverse selection costs arise, with likely 

situations of fast traders picking stale quotes of slow investors. This awareness fosters the 

debate in the literature on the whole effects of AT and HF trading on market quality, again 

with not-convergent evidence (Hasbrouck and Saar, 2013; Menkveld and Zoican, 2014). 
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Fairness of trading is an inevitable implication when comparing traders with different 

speed constraints. 

 

III. The Experiment: Real Time Streaming and Storage of Data 

III.a The Data Feed  

Stock market data feed has been obtained by Townsend Analytics, a Chicago-based 

company that introduced technology innovations affecting worldwide financial services 

industry, since mid ‘80s. The experiment has been possible thanks to the Townsend 

Analytics real-time feed (TALFeed), distributed by an Italian broker, IWBank, formerly 

Investnet spa, based in Milano (Italy).  

The “geographically-distant” receiving server was based at the University of Ancona 

(Italy) and was connected with the Wide Area Network (WAN) of TAL propriety, thanks to 

a link with a sending server based at Investnet in Milano. Communications with the WAN 

of TAL was based on the Italian University GARR connection (namely, the Italian Research 

& Education Network-NREN), which represents in Europe the frontier of 

telecommunication efficiency. Typical estimates of GARR latency3 indicate that we carried 

on an optimal experiment, in the perspective of telecommunication systems (i.e. no latency). 

Description of connections between Stock Exchanges, TAL’s WAN and sending/receiving 

servers is offered in Appendix 1. The two servers in Milano and Ancona have been 

dedicated to the experiment, with no other task except sending and receiving/storing data. 

Therefore noisy processing delays, generated by different computer tasks, were excluded. 

We use a TCP/IP byte-stream protocol to communicate requests, commands and 

receive data between servers. Estimation of delay due to the hardware processing of this 

protocol are largely under our time unit, which is the second, as also used in similar studies 

(Garvey and Wu, 2010). Latency of modern connections, also in trading environment, is 

typically measured in nanoseconds. Therefore, our time unit would appear remarkably 

large. Nevertheless, we deliberately choose the second because our aim is to exclude 

inclusion of delays due to hardware frictions, or any other (unlikely) delay due to servers 

interconnections, that are systematically lower than the second. As an example, we 

estimated that delays due protocol hardware processing and to ensure the final connection 

to the TAL’s WAN vary within the range of 0.012344- 0.001604 seconds4. Therefore, any 

delay in seconds, recorded between the sending and receiving signal, is reasonably 

motivated by a congestion situated ahead our receiving system, either due to TAL’s or Stock 

Exchanges’ servers. 

 

                                                           
3 See: http://www.garr.it/b/eng. 
4 Details are available upon request. 
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III.b The Delay of the Real-Time Streaming  

The Townsend Analytics leadership in trading services allowed us to investigate 

several Stock Exchanges simultaneously, whose data feed was based on a common 

permission environment and the same distributive architecture (see Appendix 1). We 

selected six Stock Exchanges from North America to Europe: the London Stock Exchange 

(LSE), the Borsa Italiana Stock Exchange (Bit SE), the Deutsche Bourse (XETRA), the 

Euronext Paris (PAR SE), the NASDAQ and the New York Stock Exchange (NYSE). 

Our requests in terms of TCP/IP protocol consisted in prices, volumes and time 

stamps, for each trade and each best bid-ask quote, recorded by these Stock Exchange, for a 

selection of stocks. Based on market capitalisation of the whole listed stocks as at the end of 

June 2008, for each market we sampled 100 shares divided into three categories: large caps 

– the first 30 stocks in the first quintile of each market capitalization; medium caps –the 

first 30 stocks of the third quintile; and small caps – the first 40 stocks of the fifth quintile. 

In this paper, we offer results limited to large caps5. 

The experiment started on July 21st, 2008 and ended the 23rd of September 2009. 

Data of initial days were used for experimental testing and then discarded. After 

conventional cleaning procedures, the observed period is from August 4th 2008 until 

August 14th 2009. We excluded Christmas and major holidays, and also days when the 

receiving server of Ancona shut down due to incident or planned maintenance. Finally we 

observed 256 trading days. 

For each transaction and quote, we received and recorded the official time stamp of 

the Stock Exchange as it was recorded by TAL, together with the time stamp of the 

receiving server, which was synchronized every 15 minute thanks to a network time 

protocol. By comparing these two time stamps we obtain our measures of delay: the daily 

mean, the daily median and the daily standard deviation of number of seconds of difference 

between the official time stamp and the receiving time stamp (delay_mean; delay_median; 

delay_std).  These variables act as proxy for effective latency. These delays are latency 

measures in technical meaning because refer to time elapsing between sending our request 

via the TCP/IP protocol, obtaining this information from the Stock Exchange via the data 

vendor, and receiving back the data. 

 A Stock Exchange generally divulgate its latency performance refereed to 

technological attributes. For example, NYSE reduced the trading latency from 350 

milliseconds in 2007 to 5 milliseconds in 2009 (Menkveld and Zoican, 2014); with the 8.0 

release of Xetra, system latency was reduced from 50 milliseconds to 10 milliseconds 

(Riordan, Storkenmaier, 2012). These conditions of speed can be reasonably exploited by a 

limited set of market participants, able to exploit slow-latency strategies, i.e. that work 

within the millisecond environment (Hasbrouck and Saar, 2013). The ‘hosting server’ and 

                                                           
5 For further development of the paper we are going to consider del whole set of stocks. 
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co-location services offered by Stock Exchange are typically addressed to offer technological 

latency conditions to traders. But these traders are not humans.  

Let us assume a random market participant that is located “geographically-distant” 

from the Stock Exchange servers. This market participant operates, let’s say, from Ancona 

(Italy), and is able to exploit an optimal connection with the trading services provider. 

Delays that this trader experienced during our observation period are shown in Tables 1.a, 

1.b, 1c. Each Table reports the effective latency measures (delay_mean; delay_median; 

delay_std), by day, computed on our sample of large caps, for each Stock Exchange. 

From Tables 1a and 1b we observe that daily median levels of delay (delay_median) 

for large caps of European Stock Exchanges are quite always equal to zero (charts in the 

center of Tables). This means that the effective latency would seem to be under our time 

unit (the second) and could be considered close to the official technological latency. 

Conversely, from Table 1.c we note that for large caps of US Stock Exchange we registered: 

frequently, a median delay of 2 seconds, often, of 1 second, sometimes, of 3 seconds, and 

seldom, of 0 seconds. It seems that connections with geographically distant Stock 

Exchanges imply source of friction that frequently causes delay. This would be in line with 

similar results in the literature, reporting that location still matter, even if they refer to 

distances within the US boundaries (Garvey and Wu, 2010). 

If we move from daily-median to daily-mean values of delays (delay_mean, left 

charts of Tables 1a, 1b, 1c) the situation appears markedly different: we collect evidence of 

significant delays that sometimes experience data, affecting in the same day a considerable 

number of stocks of the sample. This evidence is relevant for both European and Us stocks, 

and it is confirmed by the daily standard deviation of delay (delay_std, right charts of 

Tables 1a, 1b, 1c). Therefore, conclusions based on daily median levels of delay are not 

reliable because they are clearly motivated by the ability of the 50th centile to underweight 

outliers.  

As a first result of this paper, we have proof that effective latency conditions are not 

constant over time, with the likely occurrence of delays, sometimes longer than a few 

seconds. 

The distribution of delay outliers along the daily time line (prog) of Tables 1.a, 1.b, 

1.c is informative. For all the Stock Exchanges considered, the delay outliers appear 

concentrated in specific sub-periods. Keeping in mind that we excluded days when either 

receiving server or connections shut down, the nature of these sub-periods should hold the 

response for the delay. The significant increase in mean and standard deviation of delay 

(delay_mean and delay_std) for all the six Stock Exchanges is situated in the trading week 

between the 31st-35th day of the observation period. This is the week which goes from the 

15th to the 19th of September 2008: the Lehman Brothers collapse.  
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Table 2 shows, by each Stock Exchange, a comparison of the effective latency 

(delay_mean) recorded in receiving data, on the one hand, with the trend of the annualized 

realized volatility computed on trades (RVt) and averaged for the sampled stocks, on the 

other. From Table 2 we observe that the two trends appear similar, suggesting the presence 

of a rationale in the emergence of delays of signals. This descriptive evidence motivates the 

investigation for any influence generated by the trading flow itself, on the latency that is 

effectively experienced by “geographically-distant” traders.    

 

V. Does the trading flow affect effective latency?  

V.I. Data and Models 

From tick-by-tick figures of trades and quotes stored in our data ware house6, we 

construct daily measures that describe the trading flow, taking into control the market 

microstructure that has been varying during the observed period. Standard data cleaning 

procedures have been adopted to check the integrity of the data, and we delete obvious 

recording errors. We only consider stocks that had at least one hundred transaction per day 

necessary for some volatility computations; hence our choice of analysing only large caps, in 

this paper. Therefore, even if for each Stock Exchange we downloaded the largest 30 caps, 

we only analyse those that fulfil the minim 100 transaction per day cut off. Moreover, from 

the initial sample by market capitalization on June 2008, we lost some stocks because they 

delisted during the observation period, due to various reasons (take overs, M&A, etc..). This 

explains our final dataset of high frequency stock market data, which covers 162 large-caps 

during 2008 and 2009, for an observation period of 256 trading days.  

We set two models in order to explain our measures of effective latency, delay_mean 

(model 1) and delay_std (model2), across stocks “i” and time “t” (day), separately estimated 

by each Stock Exchange: 

[1] 

�����_����	,� = 	 + ��������_����	,���
�

���
+ ������_�����	,� + �������_�����	,�

+ ������	,� + ������� � ��	,� + �!"#��_���	,� + �$min_tick_size_trades	,�

+ �1���_ ������2�	,� + + � 23�#���	,3,�
	

3��
+ #	,� 

     

  

                                                           
6 We checked for consistency of our data with Thompson Reuter dataset and we have proof of its 

reliability. 
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[2] 

�����_���	,� = 	 + � �������_���	,���
�

���
+ ������_�����	,� + �������_�����	,�

+ ������	,� + ������� � ��	,� + �!"#��_���	,� + �$min_tick_size_trades	,�

+ �1���_ ������2�	,� + + � 23�#���	,3,�
	

3��
+ #	,� 

The first two variables (mess_traffit  and trade_reporit) indicate situations of data 

congestion, when investors tend to increase messages addressed to the Stock Exchange, 

either directly, or indirectly through alternative venues. The further two variables (qbasit 

and volatiltyit ) summarize the informational content of the trading process, also taking into 

consideration the literature that relates technological issues with adverse selection costs, 

and finally bid-ask spreads. For all these variables the main idea is that (as for streets and 

highways) the higher is the congestion of trading (travelling), the higher the likely delay. 

The first two variables are direct measures of congestion, the second two are indirect ones, 

due to the effect of information on the trading flow. 

The last set of variables (kurt_volit  , min_tick_size_tradesit  and std_imbalanceit ) works 

as market microstructure control. This is necessary because we estimate the same set of 

models (model 1 and model2) for all our six Stock Exchanges, that follow different 

microstructure architectures. Moreover, the observed period was particularly turbulent 

with various microstructural changes, differently introduced in the Stock Exchanges 

analysed.  

V.II. Explanatory Variables 

The mess_traffit  has been computed as the total number of electronic messages received 

by each Exchange for each stock of our sample, i.e. trades’ signals added to new bid-ask 

quotes’ messages. This variable is similar to the ‘electronic message traffic’ used by 

Hendershott, Jones, and Menkveld (2010) as a proxy for algorithmic trading. Hendershott, 

Jones, and Menkveld (2010) add also the number of cancellations, but unfortunately, we do 

not have this information. Even if since this 2010 paper the knowledge of algorithmic 

trading developed noticeably (Jones, 2013), we believe that this variable indicates the data 

pressure on both servers and connections, thus expecting a positive role on effective latency. 

Table 2 offers descriptive statistics of our explanatory variables, comparing the initial 

phase (the core of the crisis) and the final phase based on a more stable period. Concerning 

the average number of messages, it decreased from the first to the second sub-sample 

period. The US market are characterized by the largest number of messages (by a factor of 

2-3). This could indicate that trading in US markets has a larger component of AT than 

European markets. Interestingly, the Italian market shows the lowest level of messages 

(see Table 2). This may indicate a different level of development of Borsa Italiana. In fact, 
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while the number of messages between sub-periods decreases for all market, for the Italian 

market it increases. 

The trade_reporit is a proxy of the daily number of trades reported from venues others 

than the Stock Exchange electronic order book. This phenomenon is a typical consequence 

of the regulatory allowance for alternative trading venues. This flows of data may cause 

congestion and we expect a positive effect on effective latency. Table 2 shows that in most of 

the European Stock Exchanges the median values of this variable are zero, meaning that 

the activity of venues different from regulated market was not still so developed, compared 

to US markets that show high values of trade_reporit. Anyway, this variable for US markets 

decreased in the second sub-sample. 

The qbasit is the quoted bid ask spread, computed on a daily basis for each stock. The 

volatiltyit is the realized volatility from transactions that has been plotted in Figure 2 and 

already compared with dealy_mean.  Following traditional finance literature, this variable 

represents information and the idiosyncratic drivers of trading. We computed three 

estimators of realized volatility. The first one is the classic measure of realized volatility 

developed by ABDL, 2000. To overcome the bias induced by the variance of the noise, we 

optimally sample realized volatility for every month and every stock, by computing the 

volatility signature plots. The second measure of realized volatility we adopt is the Kernel 

estimator of B-NHLS (2009). Finally, we adopt the TSRV of Zhang, Mykland and Aït-

Sahalia (2005). All these measures have very similar behaviour and are highly correlated. 

Results are robust to the different realized volatility measures. For volatiltyit and qbasit  we 

would expect a positive/negative effect on effective latency, because the higher the 

information available (more volatility) and transparently shared among market 

participants (low adverse selection and low bid-ask spread), the higher the pressure on 

sending signals, thus causing likely increase in effective latency.  

Then, we consider the market microstructure controls. Given the panel structure of 

our models, we focused on those variables that could be both different among Stock 

Exchanges and time-varying. The kurt_volit  represents the kurtosis of intraday trading 

volumes, proxy of specific orders permitted in each market, such as iceberg orders (low 

values of kurtosis) or block trading (high value of kurtosis).  Trading in large quantity may 

cause a price impact. To avoid this, a Stock Exchange may allow the split of orders in 

“typical” sizes for that market – i.e. if a typical order is 100 shares, then a larger order will 

be split in pieces of 100. From Table 2 we have evidence that in the NYSE these measures 

of kurtosis are higher than in all the other markets (including NASDAQ). Also, these 

measures decrease from the beginning to the end of our period, indicating that at the 

highest of the crisis block trading were more frequent. 

The min_tick_size_tradesit represents the daily percentage of transactions at the 

minimum tick size. European Stock Exchanges frequently changed the tick size regime in 

the observed period as a competitive tool to face the development of alternative trading 
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venues7; nevertheless, we realized that market participants gradually reacted to these 

changes. Harris (1994) assumes that the consequences of a tick size reduction are different 

for actively or infrequently traded securities. According to his studies, frequently traded 

securities tend to exploit the benefit from lower tick sizes, at the best. Nevertheless, from 

Table 2 we have evidence that even if stocks of our sample are large caps, traders of all 

European Stock Exchanges do not trade often at the lowest tick size, with the exception of 

the LSE. In fact, LSE is the European Exchange most exposed to alternative trading venue 

competition. We use this variable as a proxy of how traders exploit benefits of change in 

tick size regimes.  

The std_imbalanceit  variable represents the daily standard deviation of the intraday 

order imbalance, as the dollar value of the ask side minus the dollar value of bid side of the 

order book. We use this variable as proxy for short selling rules. As short selling is 

precluded, the ask size of the order book is affected, causing a rebalancing of the two sides 

of the order book; consequently a change in the standard deviation of the imbalance is 

caused (or should be caused, in relation to how many market participants were effectively 

asked to attend to the rule). During the period observed many Stock Exchanges applied 

short selling bans differently, due to the sub-prime crises, as documented in Beber and 

Pagano (2013).  For all Stock Exchanges, these bans were not applied to market makers 

and some other market participants. This is why we prefer to indirectly measure the effect 

of the ban in term of variability of the intraday order imbalance. 

Finally, dummyi,k,t represent the list of dummy variables that we included to consider 

both evident system error on delays, and those days when the receiving server and 

connection shut down; αi refers to the stock fixed effect; ui,t is the error term. 

We checked for collinearity of these variables. The delay_mean, mess-traff, trade-

repor, volatility and kurt_vol are computed in log. 

We are aware that endogeneity problems arise because of the not unambiguous 

direction of the relationship between our dependent variables (delay_mean and delay_std) 

and our direct measure of congestions (mess_traffit  and trade_reporit). Is it the congestion to 

cause the queue and the delay, or is the queue/delay to cause the congestion? Therefore 

these first two explanatory variables were instrumented. We use two economically 

reasonable set of instruments: data of CDS rates Italy vs/US and Germany vs/Us in order to 

testify the spread of the crisis and its effect on Stock Exchanges, on the one hand; and the 

first and second order of lags of instrumented variables and of volatility. Nevertheless, from 

Tables 3 we have evidence that if these instruments are valid in terms of 

underidentification tests (based on the Kleibergen-Paap rk LM statistic), there are still 

problems with the overidentification test of all instruments (Hansen J statistic). 

                                                           
7 We collected from each Stock Exchange web-site the list of any institutional change in the tick size 

regime, during our observation period. Many changes have been introduced, especially in the 

European Stock Exchanges, mainly as a competitive strategy to face the ATVs growth. Nevertheless, 

by checking this information with our dataset we realized that market participants moved to the 

new tick-size regime only gradually.  
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VI. Results and conclusion 

Results of estimations of model 1 and model 2 are shown in Table 3.a and Table 3.b. 

Nevertheless, the presence of endogeneity and the (still) not perfectly reliable Hansen J 

statistics suggest cautiousness in their comments8. 

Nevertheless, robustness checks with alternative estimations suggest three main 

reliable results, as far as determinants of delay_mean (Table 3.a). 

Direct measures of congestions, i.e. mess_traffit  and trade_reporit, do not consistently 

behave as expected in all the Stock Exchanges considered, with a significant role but 

sometimes opposite signs. Precisely, the mess_traffit  variable indicates a different effect on 

effective latency, among Stock Exchanges, and we believe that it is due to the different 

level of AT development in the various markets observed (as shown by Table 2). 

Conversely, the trade_reporit  consistently play a positive role on delay_mean, as expected. 

We discard the Paris results because here the relevance of this external reporting appears 

limited, as shown by the median value of this variable equals to zero (see table 2). 

Indirect measures of pressure, due to the informational content of the trading flow, 

play a various effect on effective latency, as well. The qbasit appears seldom significant; 

when it is so, in LSE, NASDAQ and NYSE, the sign is in line with expectations only for 

the latter. Conversely, volatiltyit is always significant and with the expected sign. This is 

the most important result of the paper: volatility is positively related to effective latency. 

As expected, control market microstructure variables show various significance and 

sign, for the six Stock Exchanges, supporting that it is not possible to generalize, as for 

volatility, an “universal” driver of effective latency. 

Then, we find worthy to comment this latter result with that shown by Table 3.b, 

referring the relation between delay_std and the control microstructure variables.  The 

delay_std variable indicates the standard deviation of the delay, recorded within the trades’ 

and quotes’ signals of the same stock in the same day. It refers to the effective latency, but 

it reminds an idea of “latency risk” because it indicates if the delay of the signal is stable 

(e.g. two seconds), or volatile during the day (e.g. the delay might be 0 as well as 4 seconds). 

Interestingly, the four direct and indirect measure of congestions never show consistent 

results, both in significance and sign. Conversely, the variables that control market 

microstructure appear particularly consistent (see the kurt_volit and the  std_imbalanceit  

variable, the latter for the US exchanges) It seems that market microstructure play a role 

in controlling the effective latency risk. 

 

                                                           
8  From Hasbrouk and Saar (2013) we are going to compute further variables to be used as 

instruments. Nevertheless, their computation, in our dataset, requires a considerable amount of 

time. 
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“It reminds me of the old story of the two high frequency traders on safari. Coming out of the jungle into 

a clearing, they are faced with a hungry lion, staring at them and licking his lips. One of the traders immediately 

starts taking off his boots and donning a pair of sneakers. “What are you doing?” says the other trader. “You’ll 

never be able to outrun a hungry lion.” “I don’t need to outrun the lion,” says the first trader. “I only need to 

outrun you.” 

— HFT Review, April 2010, from Menkveld and Zoican, 2014 

Results of this paper are informative in relation the asymmetry among investors 

implicitly revealed by the above quoted metaphor. The effective latency is a time varying 

phenomenon and it is strictly related to the trading flow itself. Geographically distant 

investors experience an effective latency very different than other traders. Moreover, 

comparisons among different Stock Exchanges, with different microstructure architecture, 

different degree of development of computer trading, and likely different investors’ trading 

behaviour, indicate the presence of an “universal” feature of the trading flow that 

consistently affect the effective latency: volatility. Increase in the volatility of a stock has 

been proved to positively intensify the effective latency for a “geographically-distant” 

random trader. Market microstructure may play a role in controlling the effective latency 

risk. 
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Table 1.a. Signal delays by Stock Exchange 

These charts indicate the signal delay experienced by the sample of large cap stock analyzed, during the observed period, by each Stock Exchange 

considered. Dates are codified by a progressive number: 1: 20080804- 50: 20081010- 100: 20090108- 150: 20090319- 200: 20090528- 250: 20090806.  Figures 

refers to (left charts) the daily mean of the signal delay in number of seconds, registered as the difference between the sending signal, as the time stamp 

formally included in the data feed, and time stamp of the receiving server; (middle charts) the daily median of the signal delay  and (right charts) daily 

standard deviation of the signal delay. London Stock Exchange- LSE: 28 stocks; Deutsche Bourse-XETRA: 23 stocks. We excluded days when the receiving 

server of Ancona shut down due to incident or planned maintenance. 

London Stock Exchange- LSE 

                                  delay_mean                                                            delay_median                                                                                delay_std 

 
  

Deutsche Bourse-XETRA 
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Table 1.b Signal delays by Stock Exchange 

These charts indicate the signal delay experienced by the sample of large cap stock analyzed, during the observed period, by each Stock Exchange 

considered. Dates are codified by a progressive number (prog): 1: 20080804- 50: 20081010- 100: 20090108- 150: 20090319- 200: 20090528- 250: 20090806.  

Figures refers to (left charts) the daily mean of the signal delay in number of seconds, registered as the difference between the sending signal, as the time 

stamp formally included in the data feed, and time stamp of the receiving server; (middle charts) the daily median of the signal delay  and (right charts) 

daily standard deviation of the signal delay. Euronext Paris-PAR: 27 stocks; Borsa Italiana-BIt: 26 stocks; We excluded days when the receiving server of 

Ancona shut down due to incident or planned maintenance, plus some outliers with abnormal delays (delaymean>50’’), precisely, for Paris: 20081120- 

20090420 -20090814; for Milan: 20081112- 20090427 - 20090303- 20090316). 

Euronext Paris-PAR SE 

                                  delay_mean                                                            delay_median                                                                                delay_std 

   
Borsa Italiana-Bit SE 
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Table 1.c. Signal delays by Stock Exchange 

These charts indicate the signal delay experienced by the sample of large cap stock analyzed, during the observed period, by each Stock Exchange 

considered. Dates are codified by a progressive number (prog): 1: 20080804- 50: 20081010- 100: 20090108- 150: 20090319- 200: 20090528- 250: 20090806.  

Figures refers to (left charts) the daily mean of the signal delay in number of seconds, registered as the difference between the sending signal, as the time 

stamp formally included in the data feed, and time stamp of the receiving server; (middle charts) the daily median of the signal delay  and (right charts) 

daily standard deviation of the signal delay. NASDAQ: 30 stocks; NYSE: 28 stocks. We excluded days when the receiving server of Ancona shut down due 

to incident or planned maintenance. 

NASDAQ 
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Figure 2: Realized Volatility on trades (RVt) and Effective Latency (delay_mean) 

Realized Volatility on trades is annualized standard deviation; daily mean of the delay in seconds between the 

official time stamp and the receiving server time stamp. Computations refer to the same period and the same 

sample of stocks, for each Stock Exchange. 

London Stock Exchange- LSE 

Realized Volatility on trades Effective Latency (delay_mean) 
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Figure 2: Realized Volatility on trades continued 

Realized Volatility on trades is annualized standard deviation; daily mean of the delay in seconds between the 

official time stamp and the receiving server time stamp. Computations refer to the same period and the same 

sample of stocks, for each Stock Exchange. 

Borsa Italiana-Bit SE 

Realized Volatility on trades Effective Latency (delay_mean) 
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Realized Volatility on trades Effective Latency (delay_mean) 

 
 

NYSE 

Realized Volatility on trades Effective Latency (delay_mean) 

  

0

5

10

15

20

25

Aug-08 Oct-08 Dec-08 Feb-09 Apr-09 Jun-09 Aug-09

0
10

20
30

de
la

y_
m

e
an

0 50 100 150 200 250
prog

0

5

10

15

20

25

Aug-08 Oct-08 Dec-08 Feb-09 Apr-09 Jun-09 Aug-09

0
5

10
15

de
la

y_
m

ea
n

0 50 100 150 200 250
prog

0

5

10

15

20

25

Aug-08 Oct-08 Dec-08 Feb-09 Apr-09 Jun-09 Aug-09

0
5

10
15

20
de

la
y_

m
e

an

0 50 100 150 200 250
prog



20 

 

Table 2- Descriptive statistics for explanatory variables 

Median values of descriptive statistics by stock market: London Stock Exchange- LSE: 28 stocks; Borsa Italiana-

BIt: 26 stocks; Deutsche Bourse-XETRA: 23 stocks; Euronext Paris-PAR: 27 stocks; NASDAQ: 30 stocks; NYSE: 28 

stocks. First Sub-Period: August 4th 2008 – February 13th 2009 (126 days). Second Sub-Period: February 16th 

2009 - August 14th 2009 (130 days). 

 First Sub-Period Second Sub-Period 

LSE median mean std.dev min max median mean std.dev min max 

mess-traff 48665.75 48842.19 18565.01 7066 111241 44434.5 46994.53 12707.84 17653 88008 

trade-repor 0 1.444444 4.302948 0 29 0 0.6615385 1.606722 0 13 

volatilty 5.4121 5.7857 2.1011 2.3851 13.4172 4.2950 4.4653 1.2159 1.9542 9.3431 

kurt_vol 2096.46 3081.26 2882.15 35.03 13983.66 1816.70 2258.37 1934.53 37.39 9115.19 

min_tick_size_trades 0.7537 0.7581 0.0896 0.3042 0.9314 0.8373 0.7966 0.0953 0.2173 0.9420 

std_imbalance 0.5255 0.5259 0.0191 0.4831 0.5786 0.5325 0.5337 0.0188 0.4898 0.5793 

BIt median mean std.dev min max median mean std.dev min max 

mess-traff 7279 7670.468 3224.369 2037.5 19036.5 11536.25 12710.29 5062.1 3383 34151 

trade-repor 0 0.7777778 2.00899 0 13.5 0 0.5461538 1.302321 0 9 

volatilty 10.4928 11.3330 5.4852 3.1142 28.6774 7.5031 8.1242 2.9150 2.8005 19.4577 

kurt_vol 53.10 368.23 869.77 8.99 4989.81 50.78 253.40 535.76 10.71 3307.34 

min_tick_size_trades 0.3377 0.3684 0.1729 0.0040 0.7446 0.3824 0.4113 0.1673 0.0044 0.7546 

std_imbalance 0.5654 0.5662 0.0294 0.4935 0.6411 0.5496 0.5494 0.0249 0.4755 0.6207 

XETRA median mean std.dev min max median mean std.dev min max 

mess-traff 53981.5 56337.7 26694.8 15046 143228 44594.5 49904 13728.14 10027 89296 

trade-repor 22 26.18254 19.54949 3 115 17.5 21.04615 13.26992 0 79 

volatilty 5.5683 5.8569 2.3774 2.0102 15.7237 5.2649 5.4767 1.8805 1.9133 12.7263 

kurt_vol 1194.99 2156.94 2565.82 21.07 13519.35 990.07 1538.09 1610.86 19.31 6808.18 

min_tick_size_trades 0.2858 0.2761 0.0861 0.0059 0.4455 0.3055 0.3005 0.0720 0.0344 0.4551 

std_imbalance 0.5361 0.5368 0.0193 0.4948 0.5967 0.5336 0.5345 0.0162 0.4928 0.5916 

PAR median mean std.dev min max median mean std.dev min max 

mess-traff 47603.5 52011.9 23455.32 12370 123493 47765 51067.48 14879.2 12093 98619 

trade-repor 0 4.809524 37.02512 0 414 0 0.9 2.127159 0 16 

volatilty 5.4974 5.7333 2.1151 2.2230 12.0622 4.1724 4.3403 1.3475 1.6437 9.5741 

kurt_vol 201.00 1193.50 2392.93 20.32 13473.81 185.47 779.27 1621.74 22.48 9421.24 

min_tick_size_trades 0.1718 0.1731 0.0803 0.0476 0.4298 0.1449 0.1581 0.0704 0.0090 0.3659 

std_imbalance 0.5297 0.5305 0.0214 0.4774 0.5899 0.5170 0.5169 0.0243 0.4554 0.5814 

NASDAQ median mean std.dev min max median mean std.dev min max 

mess-traff 102489.8 105911.6 30950.25 41888 250557.5 94858.75 97226.36 30425.08 18287 229043.5 

trade-repor 991.75 1093 764.7558 0 3271.5 675 711.7769 391.1554 3 2262.5 

volatilty 2.3584 2.6153 1.2253 0.9510 7.2577 1.9972 2.0760 0.6175 0.8335 4.6671 

kurt_vol 4531.41 8463.89 9268.52 159.89 43304.34 4484.03 7906.66 8673.98 224.02 42329.56 

min_tick_size_trades 0.3992 0.4094 0.1207 0.0261 0.6602 0.4333 0.4807 0.0904 0.1014 0.6894 

std_imbalance 0.4695 0.4712 0.0256 0.4093 0.5361 0.4610 0.4597 0.0255 0.3879 0.5220 

NYS median mean std.dev min max median mean std.dev min max 

mess-traff 143496 155715.6 48623.49 64681.5 357664 115466.8 126744.3 44086.12 24435 258543.5 

trade-repor 1929.25 2004.766 1374.755 0 5422.5 1349.75 1376.893 683.3293 3 3614.5 

volatilty 1.9691 2.1977 0.9955 0.8613 6.7834 1.8098 1.8166 0.5922 0.6844 3.7500 

kurt_vol 11283.09 17155.19 14956.11 528.58 70419.43 8919.50 14968.84 13888.04 331.33 83474.05 

min_tick_size_trades 0.4135 0.4339 0.1083 0.0701 0.6781 0.5905 0.5755 0.0358 0.3565 0.7053 

std_imbalance 0.4937 0.4922 0.0258 0.4322 0.5538 0.4836 0.4861 0.0198 0.4233 0.5343 
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Table 3.a- Estimates results (preliminary) 

IV (2SLS) estimations. Statistics robust to heteroskedasticity and clustering on stock. Dependent variable: delay_mean  

LSE XETRA Bit SE PARIS SE NASDAQ   NYSE   

      

Coef. Std.Err. Coef. Std.Err. Coef. Std.Err. Coef. Std.Err. Coef. Std.Err.  Coef. Std.Err.  

L1.delay_mean 0.1794 0.0116 *** 0.2097 0.0063 *** 0.1118 0.0140 *** 0.2361 0.0088 *** 0.1500 0.0182 *** 0.1855 0.0130 *** 

L2.delay_mean 0.0786 0.0090 *** 0.0949 0.0109 *** 0.0974 0.0049 *** 0.0966 0.0051 *** 0.1301 0.0069 *** 0.1674 0.0074 *** 

mess-traff 0.0712 0.0382 * 0.0258 0.0281 -0.0696 0.0233 *** 0.0821 0.0199 *** -0.0917 0.0205 *** 0.0375 0.0149 ** 

trade-repor 0.4075 0.0505 *** 0.1476 0.0223 *** 0.8017 0.1216 *** -0.0398 0.0430 0.1984 0.0111 *** 0.1543 0.0097 *** 

qbas 0.6547 0.2541 ** 0.2338 0.2094 0.1091 0.1875 0.1510 0.1047 0.9190 0.2495 *** -0.3041 0.1593 * 

volatilty 0.1918 0.0448 *** 0.2229 0.0362 *** 0.0272 0.0360 0.1089 0.0186 *** 0.1661 0.0194 *** 0.1420 0.0223 *** 

kurt_vol 0.0162 0.0073 ** 0.0061 0.0043 -0.0089 0.0094 0.0585 0.0091 *** -0.0025 0.0036  -0.0339 0.0057 *** 

min_tick_size_trades -0.0560 0.0529 0.1909 0.0763 ** -0.1360 0.0613 ** -0.0078 0.0707 -0.0815 0.0346 ** -0.1134 0.0472 ** 

std_imbalance 0.00004 0.00002 *** -0.0001 0.0010 0.0029 0.0013 ** 0.0032 0.0025 -0.0018 0.0007 ** -0.00002 0.00047  

dummy 1 0.4686 0.1929 ** -0.4557 0.1100 *** -0.1693 0.1508 -0.3725 0.1432 *** 0.1439 0.1451  -0.0106 0.0586  

dummy 2 -0.2461 0.0170 *** -0.1740 0.0193 *** -0.2243 0.0227 *** -0.1657 0.0180 *** 0.2968 0.0312 *** 0.3752 0.0154 *** 

dummy 3 5.9388 0.2403 *** 3.2062 0.1341 ***       

α -1.7892 0.4152 *** -1.6461 0.3244 *** -0.1261 0.2603   -1.0563 0.2408 *** 0.0594 0.2195   -0.8946 0.1672 *** 

Number of obs  6705 5627 5976 5689 6697   6360   

Number of clusters (stock)  27 23 24 24 28   26   

F( 11, 26) 1308.59 927.14 839.93 3614.54 727.68   2435.64   

Prob > F       0 0 0 0 0   0   

Centered R2    0.382 0.1799 0.6449 0.317 0.5942   0.5831   

UnCentered R2  0.5675 0.4765 0.708 0.5416 0.7888   0.8022   

Residual SS              2710.872 2776.55 3003.06308 2244.271343 835.585995   757.09461   

Root MSE       0.6359 0.7024 0.7089 0.6281 0.3532   0.345   

Kleibergen-Paap rk LM statistic 26.703 19.204 22.444 22.406 27.427   25.596   

Chi-sq(10) P-val  0.0029 0.0378 0.013 0.0132 0.0022   0.0043   

Hansen J statistic  26.255 22.155 22.302 21.599 26.354   25.675   

Chi-sq(9) P-val  0.0019 0.0084 0.008 0.0102 0.0018   0.0023   
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Table 3.b- Estimates results (preliminary) 

IV (2SLS) estimations. Statistics robust to heteroskedasticity and clustering on stock. Dependent variable: delay_std  

LSE XETRA Bit SE PARIS SE NASDAQ NYSE 

Coef. Std.Err. Coef. Std.Err. Coef. Std.Err. Coef. Std.Err. Coef. Std.Err. Coef. Std.Err. 

L1.delay_mean 0.0123 0.0026 *** 0.1282 0.0361 *** -0.0013 0.0013 0.0103 0.0067 0.6109 0.0056 *** 0.6248 0.0047 *** 

L2.delay_mean 0.0122 0.0032 *** 0.0436 0.0220 ** 0.0037 0.0007 *** -0.0044 0.0063 -0.2956 0.0056 *** -0.3167 0.0025 *** 

mess-traff 1.6622 0.9673 * 0.3528 0.4355 -51.3543 7.6188 *** 2.0786 0.5371 *** -17.2780 3.4059 *** -14.8758 2.7199 *** 

trade-repor 2.5083 1.5991 1.7039 0.2882 *** 93.6725 26.4929 *** 7.3714 1.2206 *** -4.7893 0.9820 *** -4.1436 1.0229 *** 

qbas 1.7638 8.5240 5.2267 3.0309 * -209.9562 95.5085 ** 5.2619 2.8123 * 27.3266 27.0919 43.3137 18.4634 ** 

volatilty 3.6070 1.3154 *** 2.8127 0.5425 *** -48.7879 10.0499 *** 1.8099 0.4498 *** 3.3650 2.2020 -2.1371 1.6623 

kurt_vol 0.3144 0.1343 ** 0.1771 0.0656 *** -1.8268 4.1821 0.4612 0.1745 *** 4.8251 0.6146 *** 4.4076 0.5594 *** 

min_tick_size_trades -0.2711 0.8445 2.3784 1.3221 * -24.8696 33.2227 2.6546 1.6985 1.1928 4.4490 -4.1342 6.2776 

std_imbalance 0.0001 0.0001 -0.0090 0.0149 1.1638 0.8459 -0.0702 0.0965 0.3966 0.1531 ** 0.0555 0.0220 ** 

dummy 1 79.4832 23.8589 *** -5.7424 0.9126 *** 19.4223 15.7448 -4.8201 3.6733 52.7224 31.5942 * 1.4946 6.5109 

dummy 2 -2.5628 0.4216 *** -0.4656 0.5612 -20.6940 5.2020 *** -2.7001 0.3966 *** 41.2484 2.6457 *** 41.0124 3.5418 *** 

dummy 3 4051.4320 143.4640 *** 136.1175 9.4554 *** 

α -21.3251 10.7730 ** -12.3248 4.8606 ** 597.5697 86.2549 *** -25.7353 6.0768 *** 182.8079 33.3475 *** 168.5346 28.9593 *** 

Number of obs  6723 5723 5976 5757 6972 6474 

Number of clusters (stock)  27 23 24 24 28 26 

F( 11, 26) 30.3 107.58 253.39 951.82 2370.2 13053.37 

Prob > F       0 0 0 0 0 0 

Centered R2    0.1417 0.0837 0.5862 0.5037 0.3702 0.3699 

UnCentered R2  0.2103 0.2368 0.5908 0.5549 0.3831 0.3791 

Residual SS              2550521 638485.5 1096414138 1422632.272 31531113.6 27908581 

Root MSE       19.48 10.56 428.3 15.72 67.25 65.66 

Kleibergen-Paap rk LM statistic 26.68 20.08 22.852 22.408 27.461 25.065 

Chi-sq(10) P-val  0.0029 0.0285 0.0113 0.0132 0.0022 0.0052 

Hansen J statistic  25.726 20.761 22.558 21.734 25.175 21.687 

Chi-sq(9) P-val  0.0023 0.0138 0.0073 0.0098 0.0028 0.0099 
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Appendix 1: The real- time streaming of market data 

The real-time streaming of market data was possible thanks to an agreement with Investnet 

Italia. In 2008 this company was the Italian data vendor for Realtick©, a trading platform 

developed and offered by Townsend Analytics, Ltd. (TAL). The period of the streaming is from 

24-06-2008 to 31-10-2009.  

Townsend Analytics is a Chicago-based company specialized in technology innovations for 

trading, since 1985. Among the most relevant services, we quote: the first real-time financial 

software under Microsoft Windows®; the first product to provide real-time streaming data 

over the Internet; the first integrated solution for NASDAQ trading rooms; and the first 

Windows-based direct-access trading solution. Townsend Analytics also developed Archipelago 

and the Archipelago Exchange, the first US all-electronic, fully open exchange. TAL provides 

engineered direct-access solutions for money managers, asset managers, hedge funds and 

mutual funds worldwide. During the period of our data storing, TAL was owned by Lehman 

Brothers. 

In 2007 TAL reached the capacity to handle over 1 million ticks per second, from over 2,6 

million of traded instruments on the same ticker plant. TAL was the first company to reach 

that limit that was much enhanced  in 2008. 

Figure 1- Hermes architecture and topology 

 

Source: Townsend Analytics, Ltd. (TAL), 2007. 

Figure 1 describes the “ticker plants” model and the sequential treatment of raw data from 

exchanges to clients. Data source is a direct market access to several exchanges, through 

dedicated private lines covering a range of financial products (equities, futures options, etc..). 

Data normalization is processed by Feed Handlers and Headends. A Feed Handler accept data 

feed from an Exchange, create a symbology, convert data to TAL4 format, and transfer data to 

a Headend. A Headend adds symbols, stores symbol state, inserts value-added calculations, 

provides for data organization (relational model, splitting by symbol), and finally it multicasts 

data to a Cacheserver, starting the process of data distribution. A Cashserver caches data and 

send data to a Recombiner. A Recombiner routes user queries, enforces entitlements, 

maintains symbol mapping and finally compress data and send it to clients. 

Connections among entities/nodes drawn in Figure 1 are supported by a Multiprotocol Label 

Switching (MPLS) system that is a mechanism, in high-performance telecommunications 
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networks, that directs data from one network node to the next, based on short path labels. All 

these connections result into a Wide Area Network (WAN) of TAL propriety.  

An idea of the WAN which is beyond the TAL streaming of data, is drawn in Figure 2 which 

describes Realtick architecture, with US and Europe. TAL Distributed system is based on 

multiple nodes with the same function in distributed locations (Chicago, New York, London, 

Frankfurt and Milan). Large attention is given to redundancy, in terms of location (intra-site 

and inter-site), network (physical switch redundancy), hardware (redundant servers), software 

(rollover capabilities). 

Figure 2- Realtick architecture and network interconnections 

 

Source: Revised from Investnet, 2008. 

From Figure 2 it is manifest the network of connections beyond our real-time streaming. The 

receiving dedicated server based in the Ancona University was connected with a dedicated 

server (formerly called Tuber) connected to the recombiner server network based in Milan, at 

Investnet. Connection between Ancona University and Investnet’s server in Milan was 

supported by GARR, the Italian Research & Education Network (NREN), that plans and 

operates the national high-speed telecommunication network for University and Scientific 

Research. Conversely, Investnet server was connected to the TAL Wide Area Network that 

finally ensure the direct access into exchanges. 

  

1Gbit 
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Appendix 2: List of Stocks included in the analysis 

Name ISIN Market Name ISIN Market 

ALLIANZ SE VNA O.N. DE0008404005 XETRA APPLE INC US0378331005 NASDAQ 

BASF SE O.N. DE0005151005 XETRA ADOBE SYS INC US00724F1012 NASDAQ 

BAYER AG O.N. DE0005752000 XETRA APPLIED MATLS INC US0382221051 NASDAQ 

BEIERSDORF AKT DE0005200000 XETRA AMGEN INC US0311621009 NASDAQ 

BAY.MOTOREN WERKE AG ST DE0005190003 XETRA AMAZON COM INC US0231351067 NASDAQ 

COMMERZBANK AG O.N. DE0008032004 XETRA BIOGEN IDEC INC US09062X1037 NASDAQ 

CONTINENTAL AG DE0005439004 XETRA CELGENE CORP US1510201049 NASDAQ 

DAIMLER AG NA O.N. DE0007100000 XETRA COSTCO WHSL CORP NEW US22160K1051 NASDAQ 

DEUTSCHE BOERSE NA O.N. DE0005810055 XETRA CISCO SYS INC US17275R1023 NASDAQ 

DEUTSCHE BANK AG NA O.N. DE0005140008 XETRA DELL INC US24702R1014 NASDAQ 

DEUTSCHE POST AG NA O.N. DE0005552004 XETRA DIRECTV GROUP INC US25459L1061 NASDAQ 

DT.TELEKOM AG NA DE0005557508 XETRA EBAY INC US2786421030 NASDAQ 

HEIDELBERGCEMENT AG DE0006047004 XETRA ELECTRONIC ARTS INC US2855121099 NASDAQ 

LINDE AG O.N. DE0006483001 XETRA EXPRESS SCRIPTS INC US3021821000 NASDAQ 

MAN SE ST DE0005937007 XETRA FIRST SOLAR INC US3364331070 NASDAQ 

METRO AG ST O.N. DE0007257503 XETRA GENZYME CORP US3729171047 NASDAQ 

MUENCH.RUECKVERS.VNA O.N. DE0008430026 XETRA GILEAD SCIENCES INC US3755581036 NASDAQ 

RWE AG ST O.N. DE0007037129 XETRA INTEL CORP US4581401001 NASDAQ 

SAP AG O.N. DE0007164600 XETRA JUNIPER NETWORKS INC US48203R1041 NASDAQ 

K + S AKT DE0007162000 XETRA MICROSOFT CORP US5949181045 NASDAQ 

SIEMENS AG NA DE0007236101 XETRA NORTHERN TR CORP US6658591044 NASDAQ 

THYSSENKRUPP AG O.N. DE0007500001 XETRA ORACLE CORP US68389X1054 NASDAQ 

VOLKSWAGEN AG ST O.N. DE0007664005 XETRA PAYCHEX INC US7043261079 NASDAQ 

ANGLO AMERICAN GB00B1XZS820 LSE PACCAR INC US6937181088 NASDAQ 

AVIVA GB0002162385 LSE QUALCOMM INC US7475251036 NASDAQ 

ASTRAZENECA GB0009895292 LSE SCHWAB CHARLES CORP NEW US8085131055 NASDAQ 

BAE SYSTEM GB0002634946 LSE STAPLES INC US8550301027 NASDAQ 

BARCLAYS GB0031348658 LSE SYMANTEC CORP US8715031089 NASDAQ 

BRITISH AMERICAN TOBACCO GB0002875804 LSE PRICE T ROWE GROUP INC US74144T1088 NASDAQ 

BG GRP GB0008762899 LSE YAHOO INC US9843321061 NASDAQ 

BHP BILLITON GB0000566504 LSE ABBOTT LABS US0028241000 NYSE 

BP GB0007980591 LSE AMERICAN INTL GROUP INC US0268741073 NYSE 

BT GROUP GB0030913577 LSE BOEING CO US0970231058 NYSE 

CENTRICA GB00B033F229 LSE BANK OF AMERICA CORPORATION US0605051046 NYSE 

DIAGEO GB0002374006 LSE CITIGROUP INC US1729671016 NYSE 

EURASIAN GB00B29BCK10 LSE CONOCOPHILLIPS US20825C1045 NYSE 

GLAXOSMITHKLINE GB0009252882 LSE CHEVRON CORP NEW US1667641005 NYSE 

HSBC HLDGS.UK GB0005405286 LSE DISNEY WALT CO COM DISNEY US2546871060 NYSE 

IMP.TOBACCO GRP GB0004544929 LSE GEN ELECTRIC CO US3696041033 NYSE 

LLOYDS TSB GRP. GB0008706128 LSE GOLDMAN SACHS GROUP INC US38141G1040 NYSE 

NATIONAL GRID GB00B08SNH34 LSE HEWLETT PACKARD CO US4282361033 NYSE 

PRUDENTIAL GB0007099541 LSE INTERNATIONAL BUSINESS MACHS US4592001014 NYSE 

RECKITT BEN. GP GB00B24CGK77 LSE JOHNSON & JOHNSON US4781601046 NYSE 

ROYAL BANK SCOT GB0007547838 LSE JP MORGAN CHASE & CO US46625H1005 NYSE 

RIO TINTO GB0007188757 LSE COCA COLA CO US1912161007 NYSE 

SABMILLER GB0004835483 LSE MCDONALDS CORP US5801351017 NYSE 

SCOTTISH & SOUTHERN ENERGY GB0007908733 LSE MONSANTO CO NEW US61166W1018 NYSE 

STAND.CHART. GB0004082847 LSE MERCK & CO INC US5893311077 NYSE 

TESCO GB0008847096 LSE OCCIDENTAL PETE CORP DEL US6745991058 NYSE 

UNILEVER GB00B10RZP78 LSE PEPSICO INC US7134481081 NYSE 

VODAFONE GRP. GB00B16GWD56 LSE PFIZER INC US7170811035 NYSE 

XSTRATA GB0031411001 LSE PROCTER & GAMBLE CO US7427181091 NYSE 

ACEA IT0001207098 BIt PHILIP MORRIS INTL INC US7181721090 NYSE 

AUTOGRILL IT0001137345 BIt AT&T INC US00206R1023 NYSE 

ALLEANZA ASS       . IT0000078193 BIt UNITED TECHNOLOGIES CORP US9130171096 NYSE 

BCA MPS IT0001334587 BIt VERIZON COMMUNICATIONS INC US92343V1044 NYSE 

BUZZI UNICEM IT0001347308 BIt WELLS FARGO & CO NEW US9497461015 NYSE 

BCA CARIGE         . IT0003211601 BIt WAL MART STORES INC US9311421039 NYSE 

EDISON             . IT0003152417 BIt EXXON MOBIL CORP US30231G1022 NYSE 

ENEL               . IT0003128367 BIt ACCOR SA FR0000120404 PARIS SE 
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Name ISIN Market Name ISIN Market 

FIAT               . IT0001976403 BIt CREDIT AGRICOLE FR0000045072 PARIS SE 

FINMECCANICA IT0003856405 BIt AIR LIQUIDE FR0000120073 PARIS SE 

FONDIARIA-SAI IT0001463071 BIt ALSTOM FR0010220475 PARIS SE 

GENERALI ASS IT0000062072 BIt DANONE FR0000120644 PARIS SE 

GEOX IT0003697080  BIt BNP PARIBAS FR0000131104 PARIS SE 

HERA IT0001250932 BIt CARREFOUR FR0000120172 PARIS SE 

ITALCEMENTI IT0001465159 BIt CHRISTIAN DIOR FR0000130403 PARIS SE 

LUXOTTICA GROUP IT0001479374 BIt AXA FR0000120628 PARIS SE 

MEDIOBANCA         . IT0000062957 BIt VINCI (EX.SGE) FR0000125486 PARIS SE 

MEDIOLANUM         . IT0001279501 BIt EDF FR0010242511 PARIS SE 

MEDIASET S.P.A IT0001063210 BIt BOUYGUES FR0000120503 PARIS SE 

PIRELLI E C IT0000072725 BIt ERAMET FR0000131757 PARIS SE 

PARMALAT IT0003826473 BIt FRANCE TELECOM FR0000133308 PARIS SE 

BCA POP MILANO IT0000064482 BIt SOCIETE GENERALE FR0000130809 PARIS SE 

SAIPEM IT0000068525 BIt NATIXIS FR0000120685 PARIS SE 

SNAM RETE GAS IT0003153415 BIt LAFARGE FR0000120537 PARIS SE 

TELECOM ITALIA IT0003497168 BIt LVMH FR0000121014 PARIS SE 

TERNA IT0003242622 BIt L'OREAL FR0000120321 PARIS SE 

UNIPOL             . IT0001074571 BIt PERNOD RICARD FR0000120693 PARIS SE 

   

RENAULT FR0000131906 PARIS SE 

   

SANOFI-AVENTIS FR0000120578 PARIS SE 

   

SAINT GOBAIN FR0000125007 PARIS SE 

   

SCHNEIDER ELECTRIC FR0000121972 PARIS SE 

   

UNIBAIL-RODAMCO FR0000124711 PARIS SE 

   

VEOLIA ENVIRON. FR0000124141 PARIS SE 

   

VIVENDI FR0000127771 PARIS SE 
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