

MODELLING PESTICIDE VOLATILIZATION FROM CROP AT THE FIELD SCALE

BEDOS C.¹, PERSONNE E.¹, LICHIHEB N.¹, MAGANDJI-DOUCKAGHA G., BARRIUSO E.¹

¹INRA, Environment and Arable Crops Research Unit F-78850, Thiverval-Grignon, France

e-mail: Carole.Bedos@grignon.inra.fr

Outline

- Introduction Context Objectives of the study
- Materials and methods
 - ✤ Model
 - Experimental setup
- Results in terms of leaf temperature and pesticide volatilization fluxes (simulated *vs* measured)
- Conclusions and Perspectives

Context: Volatilization rates from crop, main involved factors identified

Context: Volatilization rates from crop observed at the field scale (ng/m²/s)

e.g. two fungicides of wheat

- Various orders of magnitude
- Different time dynamics
- Diurnal cycle

Objectives of this study

Model the pesticide volatilization from leaf at the field scale, in a mechanistic way *i.e.* taking into account main factors involved at an adapted time scale (infra-hourly)

Test this model with dataset

Study the contribution to the global volatilization from crop of the volatilization from soil and the volatilization from leaves

=> towards an emission module to be used for modelling the pesticide behaviour in the atmosphere at larger scales

Material and Methods: The SURFATM model (Personne et al., 2009), volatilization from crop

EGC

Material and Methods: The SURFATM model, other processes

- an energy budget model for soil and leaf surfaces
- water transfer in the soil considered as a single reservoir with a dry layer at the surface
- a pollutant exchange model (fluxes of NH_3 , O_3), which distinguishes the soil and leaf exchange processes and which is directly coupled to the energy balance via the soil and leaf surface temperatures

+ interception of the spraying solution by the crop (from Gyldenkaerne et al., 1999) implemented for the purpose of this study

Material and Methods: Experimental set-up (Bedos et al., 2010)

Two fungicides: *Chlorothalonil* (7.6 10⁻⁵ Pa) and *Fenpropidin* (1.7 10⁻² Pa)

Flux measured from May 4 to May 9

+ micrometeorological conditions: evaporation, sensible heat flux, leaf and soil surface temperatures

XIV Symposium on Pesticide Chemistry Piacenza (Italy), 30th of August -1st of September, 2011

Focus on the application dose measurements 446 856 C: F: Fenpropidin + pesticide residue on leaf C/F: 1.92 C: Chlorothalonil Leaves Filters crop/so F: 296 (32%, 8) F: 86 (68%,8] C: 728 (14%, 8) C: 524 (19% 8) C/F: 2.46 C/F: 6.09 **Initial distribution** 3 F: 133 (45%) F: 73 (47%.6) 2 C: 496 (68%) C: 579 (32%.6) C/F: 7.89 F: 163 (41%, 6) C: 231 (17%, 6) C/F: 1.42 Calculated foliage interception x g har1 (v% of upper level filters) Bedos et al. (2010)

Material and Methods : Experimental set-up

 ⇒ Interception of the application by the crop : input data for the volatilization model *The model is run with measured applied amount on leaves, with an application assumed at 10:30 (end of the real application)* ⇒Need to improve the estimation of the application dose Cf. Workshop 2008 (Cambridge)

Results Comparison of modelled and measured surface temperature of

 \Rightarrow Pretty good agreement \Rightarrow Leaf temperature and air temperature different (Tf-Ta= 2°C during daytime)

Results Comparison of modelled and measured flux volatilization of

Piacenza (Italy), 30th of August -1st of September, 2011

Results: Comparison of modelled and measured flux volatilization of Fenpropidin

No values found in the litterature for competing processes, best results found for

XIV Symposium on Pesticide Chemistry Piacenza (Italy), 30th of August -1st of September, 2011

Conclusions: volatilization from plant surfaces

description of the volatilization fluxes is possible when the coefficients for competing processes are known

to go further on, we have to:

- Analyse the time evolution of pesticide residue on leaves
- Mechanistically describe competing processes
- Measurements : better estimate residue on leaves and early stage volatilization

Study the contribution of volatilization from soil and from leaves

Perspectives: Coupling « off-line » SURFATM and Vol'Air-Pesticides

Perspectives: Coupling « off-line » SURFATM and Vol'Air-Pesticides

First results:

- * contribution of volatilization from soil and from leaf surfaces as a function of time
- * Denosition on soil just after annlication

XIV Symposium on Pesticide Chemistry Piacenza (Italy), 30th of August -1st of September, 2011

Thank you for your attention

Special thanks to E. Van Den Berg for his help on the parameterization of volatilization

XIV Symposium on Pesticide Chemistry Piacenza (Italy), 30th of August -1st of September, 2011

