

Presentation & application

a CKB/FoMa funded project

- ¹: Swedish University of Agricultural Sciences (SLU) Soil and Environment, Uppsala, Sweden
- ²: Geosigma, Uppsala, Sweden

MACRO-S

31st August 2011

One step forward in the EU legislation (Thematic Strategy on the Sustainable use of Pesticides + Water Framework Directive)

+ Research progress in spatial estimation of pesticide fate in soils (FOOTPRINT/FOOTWAYS Tools, FROGS, GeoPEARL, MACRO-SE, ...)

Is there a risk from using a given pesticide? (registration)

Which part of the landscape contributes to a diffuse pollution? *or* What mitigation measure might be efficient?

FOOTPRINT EU FP6 Project: significant progress:

(a) EU wide soil, crop, climate and land-use datasets

(b) Hydrological classification of soils (water flow path: surface water and/or groundwater?)

(c) Pedotransfer functions

(d) Post-processing tools tailored for pesticide fate assessments at the regional scale (FOOT-NES, FOOT-CRS)

- Using or creating new datasets adapted to Sweden
- A tool for answering both stakeholders questions and fulfilling research needs
- A more flexible parameterisation and modelling environment for
 - Faster integration of new research development
 - Integration with other projects

In practice

A **command line toolbox** for scenario based pesticide fate modelling: MACRO and the FOOTPRINT methodology embedded into a package for the R software (computing environment) + new GIS datasets

Principle

1. Scenario list

Maps: Soil + Climate + Land use

Scenario table

= all scenarios in an area 2. Parameterisation& modeling

Lookup databases (soil, climate, crop) + parameter estimation functions

Agglomerate Results. Spatial averaging

or export to

FOOT-NES

Run MACRO pesticide fate model

•1D pesticide fate model (MACRO) on 26 years weather data series for all the combinations. Characteristics:

- Edge of the field transport (base of the soil)
- Macropore transport (non-equilibrium flow)
- Losses to groundwater (bottom of the soil)
- Losses to drains and ditches
- Losses by runoff and erosion (under development)

Data: Case study for Skåne (Scania)

- Soils: Soil map of Skåne (from SGU + SLU data)
- Cropping statistics (FOOTPRINT)
- Climate: 6 climate zones in Skåne (3 dominants, 3 minors), Johnsson & Mårtensson 2002
- 2 {crop x pesticides x application period} combinations

- Isoproturon on winter cereals (wheat), autumn application;
- Bentazone on peas, late spring application;
- Modelling: 230 simulations per crop

FST Soil Map of Skåne (south Sweden)

- SGU Quaternary geology
- SLU topsoil samples database

Geology and dominant FST

Peat (Q66t)

Fluvial sediment [fine-coarse] (Q22a)
Clay, glacial and postglacial, lacustrine (U24ui)
Silt, glacial and postglacial, lacustrine (W22n)
Sand, postglacial [sand-block] (L11n)
Glacio-lacustrine sediment [silt-sand] (L11h)
Glacio-fluvial sediment [sand-block] (L11p)
Moraine, non-clayey (W11n)
Moraine, clayey [< 15%] (X22n)
Moraine, clayey [> 25%] (Y22u)
Moraine, clayey [15-25%] (Y22u)
Bedrock, non-sedimentary (-)
Bedrock, sedimentary (L20r)

Filling, anthopic (-)

Water (-)

SLU

Non-arable

Contamination pathways

Where does the water go?

Derived from FST map (hydrological code)

SLU

Losses to drains & ditches (edge of fields)

Losses to drains & ditches (edge of fields)

Spatially variable DT₅₀ and K_{OC}

 Follow up of Ghafoor et al.'s (Posters, this conference) work on pesticide degradation

• Same model structure, but fitted with only Swedish studies on bentazone (PLS regressions validated with bootstrap)

• Step 1: PTF to predict Bentazone K_D : $K_D = 0.82 + 5.02 * \text{fOC} - 0.09 * \text{pH}$

• Step 2: PTF to predict Bentazone DT_{50} , using the predicted K_D : k = 10^[- 14.79 * $log_{10}(pH) + 2.33 * log_{10}(fOC) + 0.51 * log_{10}(%Clay) - 4.86 * log10(K_D)]$ (bounded to avoid extrapolation)

• Checked: Average prediction errors lower than when using a k value from a pesticide properties database (PTF = improvement). KompetensCentrum för Kemiska Bekämpningsmedel

Without spatially variable DT₅₀ and K_{oc}

Differences: Coarse / clayey soils

Bentazone

But also cropping statistics (municipality level)

SLU

With spatially variable DT₅₀ and K_{oc}

- Climate change impact on pesticide losses? (Steffens et al.'s poster);
- Digital Soil Map of Sweden (Grant Tranter);
- Simple dilution routines for surface water;
- Improved handling of GIS data;
- Validation against pesticide monitoring data (CKB). Problems to solve:
 - Historical contamination of groundwater;
 - Poor geo-referencing of the monitoring sites (municipality)
 - Not designed for extensive monitoring (vary in time & depth)

Regional modelling of pesticide fate is a powerful tool, but:

- Need to be tested against monitoring data. Not so simple;
- \bullet Spatially variable DT_{50} and K_{OC} is promising, but more literature meta-analysis needed;
- Quality of input survey data is critical;
- Usage by stakeholders & researchers to be defined;
- More technical improvement expected;

Thank you for you attention

Any questions?

Recharge or discharge area?	Classes	MACRO bottom boundary condition		Description
Recharge to groundwater	L, M, N	Unit hydraulic gradient		Permeable substrate, groundwater > 2m depth
Discharge to surface water	O, P, Q	Zero flow		Low-lying topography, groundwater depth (O, P > Q)
	R, S, T, U, V			Impermeable substrate
Both recharge and discharge	W, X, Y	Percolation as function of water table height		Slowly permeable substrate Recharge: W>X>Y
FOOTPRINT hydrologic class texture code code			produce of the second s	VERY FINE 4 FINE 2 CEDIUM 3 CEDIUM 5 CEDIUM 5 CEDIUM 5 CEDIUM 5 CEDIUM 5 CEDIUM 5 CEDIUM 5 CEDIUM

The FOOTPRINT Soil Type (FST) classification

