

Do Lab Derived K_{oc} Values of Pesticides Match K_{oc} Values Determined from Column and Field-Scale Experiments? A critical Analysis of Relevant Literature.

Vereecken H¹, <u>J. Vanderborght¹</u>, R. Kasteel¹, M. Spiteller², A. Schäffer³, M. Close⁴

- ¹ Agrosphere, IBG-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- ² Institute of Environmental Research (INFU) of the Faculty of Chemistry Chair of Environmental Chemistry and Analytical Chemistry, Dortmund University of Technology, Germany
- ³ Institute for Environmental Research (Biology 5), RWTH Aachen University, 52074 Aachen, Germany
- ⁴ Institute of Environmental Science and Research, P.O. Box 29 181, Christchurch, New Zealand.

- Sorption of pesticides to the soil matrix is an important process that is always considered when assessing the fate of pesticides in the environment.
- The equilibrium distribution coefficient of the substance between liquid and solid phase, *Kd*, is commonly used to quantify sorption.
- Batch sorption studies are used to determine *Kd* (OECD, 2000, 2004)

(Kd = Koc OC)

Problems with batch sorption studies and application of Kd derived from batch studies for the assessment of pesticide mobility:

- Drying, milling of soil --> change in soil properties?
- Optimized contact between solution and soil particles (large water:soil ratio, shaking) --> relevance for contact between solution and sorption sites in undisturbed soils?
- Limited duration (1 d) --> equilibrium?
- Do equilibrium conditions occur in soils (less optimal contact, range of flow rates in different pore sizes, other time scales, ...)?
- Accuracy in the case of weakly sorbing substances?

Column and field studies to determine sorption parameters

Retardation coefficient: $R = t_s / t_i$

$$R = 1 + \rho_b Kd/\theta$$

Effect of non-equilbrium sorption on transport

$$\begin{cases} \theta \left(1 + f \frac{\rho_b}{\theta} \frac{dF \mathbf{C}_l}{dC_l}\right) \frac{\partial C_l}{\partial t} = \frac{\partial}{\partial z} \left(\theta D_e \frac{\partial C_l}{\partial z}\right) - Jw \frac{\partial C_l}{\partial z} - \alpha \rho_b \mathbf{C}_l - f \mathbf{F} \mathbf{C}_l - C_{a2} \right) \\ \frac{\partial C_{a2}}{\partial t} = \alpha \mathbf{C}_l - f \mathbf{F} \mathbf{C}_l - C_{a2} \end{cases}$$

$$\alpha = \text{mass exchange coefficient}$$

Literature Review

- Peer reviewed articles in scientific journals (ISI listed)
- Kd/Koc derived from:
 - both batch and column studies for the same pesticide and soil.
 (139 Kd values; 31 substances)
 - both batch and field studies for the same pesticide and soil.
 (24 Kd values)
- α derived from column studies
- Additional parameters:
 - pore water velocity: v
 - solute residence time in column/field experiment: T_{res} = z*R/v
- Data subsets:
 - saturated (S) vs. unsaturated (Us)
 - undisturbed (Ud) vs. packed (P)

Results: K_{oc} batch (K_{oc}) versus K_{oc} column (K_{oc})

For $K_{oc} < 41.5 \text{ l kg}^{-1}$: $K_{oc c} > K_{oc b}$

For Unsaturated/undisturbed column experiments, $K_{oc_c} > K_{oc_b}$

Results: Effect of pore water velocity on ratio K_{oc b}/K_{oc c}

For v < 35 mm /d: $K_{oc_b} < K_{oc_c} (R_s = K_{oc_b}/K_{oc_c} < 1)$ (only experiments in unsaturated and undisturbed soil columns)

Results: Effect of solute residence time on ratio K_{oc b}/K_{oc c}

All data: $K_{oc_b} < K_{oc_c}$ when residence time $T_{res} > 1.8$ days

Batch experiments (with typical equilibration time of 1 d) underestimate Koc in column experiments with a residence time larger than 1.8 days.

But, ...

Results: Effect of solute residence time on ratio K_{oc b}/K_{oc c}

Experiments in undisturbed columns for unsaturated conditions: $K_{oc_b} < K_{oc_c}$ when residence time $T_{res} > 15.5$ days

--> Sorption in undisturbed unsaturated columns is slower than in batch experiments (sorption sites are not so accessible under unsaturated conditions and in undisturbed columns)

Agrosphere, IBG-3

Results: Relation Between Mass Exchange Rate Coefficient α and Residence Time

Residence time in the soil column, $\log_{10}(T_{\text{res}})$ (days)

Results: K_{oc} batch (K_{oc}) versus K_{oc} field (K_{oc})

For $K_{oc_b} > 48.5 \text{ l kg}^{-1}$, $K_{oc_b} > K_{oc_f}$

Results: Effect of pore water velocity on ratio K_{oc b}/K_{oc c}

Pore water velocities are much smaller than in column studies.

In column studies, $K_{oc\ c} > K_{oc\ b}$ for these pore water velocities.

 $K_{oc\ f} < K_{oc\ b}$ for a considerable number of experiments.

(--> uncertainty of inversely estimated parameters from field experiments, effect of degradation and irreversible sorption, effect of spatial variability, ...)

Conclusions

- For low pore water velocities K_{oc_c} > K_{oc_b} (unsaturated and undisturbed columns).
- With increasing residence time ratio K_{oc b}/K_{oc c} decreases
- --> Equilibrium conditions reached in batch experiments of 1 d?
- For undisturbed and unsaturated column experiments, residence time should be considerably larger than the duration of the batch experiments to obtain the same Koc
- --> sorption rates in these columns are slower
- Flow velocities in field experiments are generally much lower than in column experiments.
- Nevertheless, K_{oc f} < K_{oc b} in many cases
- --> uncertainty

