Determination of trace elements in nanoparticle form in food and biological matrices

Federica Aureli, Francesco Cubadda

Dept. Food Safety, Nutrition and Veterinary Public Health Istituto Superiore di Sanità - National Institute of Health Rome, Italy

federica.aureli@iss.it

Workshop 'Trace elements in food: application with ICP-MS and ICP-MS/MS' Piacenza 21 June 2019

Outline

- □ Introduction to nanotechnologies
- Metrological issues

ICP-MS-based techniques for NMs detection and characterization

- ✓ Single particle ICP-MS (sp ICP-MS)
- ✓ Asymmetric flow field flow fractionation-ICP-MS (AF4-ICP-MS)
- **Detection of NMs in food and biological matrices**
- **Take home messages**

What is nanotechnology?

Nanotechnology applications in the food sector

Nanotechnology	Application	Function	
Nanosensors	Nanosprays Hand-held devices	Binding and coloring micro- organisms; Detection of contaminants, mycotoxins and microorganism	
Nano-sized additives	Organic or inorganic nano-sized additives for feed applications, inclusing removal of toxins in feed	or inorganic nano-sized Various (including nutritional additives) with lesser amounts needed for a specific function	
Nanopesticides	Nano-emulsions, encapsulates Triggered release nano- encapsulates	Increased efficacy and water solubility Triggered (local) release	
Other nanosized agrochemicals	Nano-sized fertilisers, blocides, veterinary medicines	Improved delivery of agrochemicals in the field, better efficacy, better control of application/dose, less use of solvents in agricultural spraying	

Agricultural production

Nanotechnology applications in the food sector

Nanotechnology	Application	Function	
Nanotechnology	Application	Function	Fo
Processed nano- structured or nano- textured food products.	Nanoemulsions, micelles	Use of less fat and emulsifiers, stable emulsions, better tasting food products	100
Nano-sized additives	Organic or inorganic nano-sized additives for food and health- food applications	Various, but lesser amounts would be needed for a function or a taste attribute, better dispersability may also occur	h
Nanoencapsulates	Nano-carrier systems in the form of liposomes or biopolymer-based nano- encapsulated substances	Providing protective barriers, flavour and taste masking, controlled release, and better dispersability for water-insoluble food ingredients and additives	
Nutritional supplements and nutraceuticals	Nano-ingredients and additives Nano-carrier systems for delivery of nutrients	Enhanced absorption and bioavailability of nano-sized ingredients in the body	
Nanofilters	Nanofiltration (e.g. porous silica, regenerated cellulose membranes)	Filtration of water and removal of some undesired components in food, such as bitter taste in some plant extracts	

od processing

Nanotechnology applications in the food sector

Na	notechnology	Application	Function	
Na	Nanotechnology	Application	Function	
	^F Nanotechnology	Application	Function	Packaging & storage
Na	s Nanocomposites	Incorporating nanoparticle into a polymer to form a composite	s Improving strength of materials, durability, barrier properties, biodegradation	
	Nano-coatings	Incorporating nanomateria onto the packaging surfac	ls Improving barrier properties e	[Three Layers]
Na	"Active" FCMs	Incorporating active nanoparticles with intention release into- and	Oxygen scavenging, nal prevention of growth of pathogens	- PET
Ot ag	,	consequent effect on the packaged food		
	^a "intelligent" packa materials	for food labelling	 Detection of food deterioration, monitoring storage conditions 	

Nanotechnology in the agri-food industry

□ Sistematic literature review listed the most frequently used types of NM in applications in agri/feed/food

RIKILT and JRC, 2014. EFSA Supporting Publication 2014; 11(7):EN-621, 125 pp.

Terminology: ENMs, MNMs, assemblies of particles

Useful ISO terms

The International Organisation for Standardization had defined the term "nano-object" as the generic term for all discrete nanoscale objects (material with one, two c three external dimensions in the nanoscale)

Overarching European Commission's definition of nanomaterial for legislative and policy purposes (Recommendation 2011/696/EU)

"a natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate or as an agglomerate and where, for 50 % or more of the particles in the number size distribution, one or more external dimensions is in the size range 1 nm - 100 nm.

Percentage of particles with one or more external dimensions is in the size range 1-100 nm

Metrological issues

The term "identity" consists of two parts, namely size and chemical composition

diameters are either average, median, or modal values obtained from the number-based size distribution)

DLS: *hydrodynamic diameter* of particles (expressesd as diameter of a spherical particle that has the same Brownian motion behaviour in suspension)

CLS: *sedimentation behaviour* of a particle and expresses size as diameter of a sphere of equal sedimentation properties

Linsinger TPJ et al. (2013) Food Chem 138, 1959

Physicochemical characterization of nanomaterials

- Many parameters play a major role in NM properties and characterization of nanomaterials, even in their pristine state, is not trivial
- Electron microscopy (e.g. TEM, SEM) is essential for NMs imaging (*e.g.* investigation of morphology) but is costly and hardly provides quantitative data in complex samples

A multi-method approach is preferred and the use of robust techniques more readily available in most laboratories is targeted nowadays

Focusing on key techniques

Techniques for measuring size distributions of inorganic NMs

Centrifugation-based techniques

Centrifugal particle sedimentation (CPS)

Analytical ultracentrifugation (AUC)

Laser light-scattering techniques

DLS (Dynamic light scattering)

Electron microscopy

SEM (Scanning electron microscopy)

TEM (Transmission electron microscopy)

Hyphenated ICP-MS based methods

HDC-ICP-MS (Hydrodynamic chromatography ICP-MS) Also chemical identitiy

FFF-ICP-MS (Field Flow Fractionation ICP-MS) Also chemical identitiv

□ single particle ICP-MS Also chemical identitiy

There is **no single technique** that able to satisfactorily and routinely measure the number size distribution particle of objects in the 1-100 nm size range

is

ICP-MS: an essential tool for characterization of inorganic NMs

- Inductively coupled plasma mass spectrometry (ICP-MS)-based techniques are becoming essential tools to cope with the quantitative characterization of inorganic NMs (iNMs)
- ICP-MS-based techniques are attractive since they are able not only to measure size and size distributions, but also to determine the chemical identity of the particles at the same time
 - ✓ Single particle ICP-MS (sp ICP-MS)
 - ✓ Asymmetric flow field flow fractionation-ICP-MS (AF4-ICP-MS)

Single-particle ICP-MS and FFF-ICP-MS

Single particle ICP-MS

Time resolved analysis of very diluted NP dispersions using short dwell times (≤10 ms)

- sp ICP-MS: element-specific method for counting particles
 - Accurate size determination is possible (spherical assumption)
- The particle concentration determines the frequency of the signal peaks

Single particle ICP-MS: metrics

- ✓ NP average size
- ✓ NP size distribution
- ✓ NP number concentration
- ✓ NP mass concentration
- Ability to distinguish between dissolved ions and particulate matter

EU

Interlaboratory studies on single particle-ICP-MS determination of Ag NPs in: (1) aqueous or ethanol dispersions and (2) in chicken meat

Use of μs dwell time and Sampling multiple data points per particle

S OTVITAL

In sp ICP-MS, transient data acquisition speed consists of two parameters:

- **dwell time** (reading time)
- **settling time** (overhead and processing time)

Dwell time and the effect of the dissolved species

Size limits of detection for silver nanoparticles decreased in the presence of different concentrations of dissolved silver (I)

Anal Bioanal Chem (2016) 408:5089

Size characterisation of particulate food additives and nutrient sources

Materials studied:

Anatase and rutile TiO_2 (food colours, E171) Yellow iron oxide (FeO(OH)) (food colour, E172) Red iron oxide (Fe₂O₃) (food colour, E172) Zinc oxide (a source of zinc in food supplements)

Aim:

Size characterization of these realworld particulate materials **as such** (i.e. as pristine materials) and in food, focusing on the nanosized fractions (% of particles <100 and <200 nm)

Instrumentation and analytical conditions:

Analyses performed with a PerkinElmer Nexion 350D, equipped with a Nanomodule, using dwell times \leq 100 μ s

The pristine materials were studied after dispersion with a standardized protocol (Nanogenotox)

Nanomaterial characterization facility @ ISS

To deal with the multifaceted challenges posed by the characterization of nanomaterials and their analytical determination in complex matrixes such as food and biological samples

Reproductive/endocrine effects on low dose, short-term exposure to TiO₂

Single particle ICP-MS used to assess deposition in particulate form

Successful detection of the tiny deposition in spleen of TiO₂ NP agglomerates (130 nm average size) after short-term oral exposure to low doses of TiO₂ NPs

Nanotoxicology, 2013; Early Online, 1–9 © 2013 Informa UK, Ltd. ISSN: 1743-5390 print/1743-5404 online DOI: 10.3109/17435390.2013.822114	informa healthcare
Oral, short-term exposure to titanium dio Sprague-Dawley rat: focus on reproductiv systems and spleen	oxide nanoparticles in re and endocrine
Roberta Tassinari ¹ , Francesco Cubadda ¹ , Gabriele Moracci ¹ , Fed	derica Aureli ¹ , Marilena D'Amato ¹ ,

Agreement with SEM/EDX, but sp ICP-MS provided quantitative data

Reproductive/endocrine effects on low dose, short-term exposure to TiO₂

Continued: Single particle-ICP-MS on enzymatic extracts of spleen tissue

In treated animals, average **size** of the detected particles ca. **130 nm**

Mass concentration, control-corrected and expressed as Ti:

> 0.007 ± 0.002 μg/g spleen tissue

in accordance with the results of total Ti in digested tissues

Inhalation exposure of pregnant mice to Ag NPs: effects on foetuses

Demonstration that inhalation exposure of pregnant mice to Ag NPs results in particles reaching the placenta and thereby in exposure of embryos

Ag nanoparticles in mouse placenta after inhaltion exposure (*nose-only*) during the first 15 days of gestation

Agreement with TEM, but sp ICP-MS provided quantitative data

SAMPLE PREPARATION IS CRITICAL Need to extract particles from biological tissues, ideally without altering their state

Field flow fractionation

Separation range

Thermal Field
Sedimentation Field
Gravitational Field
Flow Field

Courtesy of Postnova Analytics

Asymmetric flow field flow fractionation

Separation Mechanism

- Gentle separation, no interaction with a stationary phase (important since NMs are reactive and stick to surfaces): **fractionation of particles according to their size**
- Enormous potential due to the possibility for on-line combination with optical detectors (size determination by MALS, DLS, UV abs.) and ICP-MS (elemental detection and quantification)

First interlaboratory study on AF4-ICP-MS 'Determination of Ag particles'

Organized by European Commission (JRC-Ispra) in 2013

Standard bimodal and trimodal mixtures

First phase completedmethod optimization

Challenges of the determination of nanosized oxides such as SiO₂

- □ A limitation of ICP-MS-based techniques is represented by the determination of certain oxides such as SiO₂ and TiO₂ that is hampered by significant analytical challenges
- Sensitive and accurate silicon determination in standard, i.e. single quadrupole, mode is precluded owing to polyatomic interferences affecting the three naturally occurring isotopes

Silicon	🗶 💻 Mass 28 🛛 👂	🗖 Mass 29 🗙 🗙	Mass 30	
14 Si mass alumn average mass: 20.1 28 92 29 4 30 3	Interferences at: 28 anui 290 Herterences in water /5 % HNO3 for KP-MS: Steelen % alund	Interferences at: 29 amu Interferences in water /5 % HNO3 for ICP AIS construct S sound	Interferences at: 30 amu Interferences in water / 5 % HNO3 for ICP-MS	
23 25 27 29 31 33 35	Isobarics: 8/ 92 230 Doubly charged: Mr 100.000 Background: N2 99 202 CO 98 702	Isobarics: Status: SI 4,670 Background: 0,797 N2 0,797 N2H 99,187 CO 1,137 COH 98,887	species: % shund Isobarics: 3.100 Backspound: 0.003 N2H 0.596 NO 99.401 CO 0.196	

□ The use of ICP-MS systems equipped with dynamic reaction cell (ICP-DRC-MS) or tandem mass spectrometry (ICP-MS/MS) does represent a viable solutions for the interference-free quantitative determination of SiO₂ in different sample types

Time resolved analysis as characterization tool

Investigating agglomeration and dissolution of silica nanoparticles in aqueous suspensions

SUPERIOR

SUTVTO

Removal of interferences affecting Si detection by ICP-MS/MS

□ The ICP-MS/MS can be used in mass-shift mode to selectively shift the target analyte ion away from intense spectral interferences at the analyte ion's original native mass

Interferences affecting Si detection removed by ICP-MS/MS

- O₂ was added as a reactive gas into the octopole cell to convert the Si⁺ ions (Q1) into SiO⁺ ions, which were measured at the corresponding m/z ratios of 44, 45 and 46 (Q2)
- □ In the MS/MS mass-shift mode, after optimization of the O₂ flow rate the signal intensities obtained at m/z ratios of 44, 45 and 46 followed the natural isotopic pattern of Si

Obtained (blue peaks)^a and theoretical (red boxes) silicon isotopic pattern.

^aCorrected to account for the oxygen isotopic composition and the contribution of $^{28}Si^{17}O^+$ at m/z =45 and of $^{28}Si^{18}O^+$ at m/z=46

Aureli et al J Anal At Spectrom 30, 1266 (2015)

Asymmetric flow field flow fractionation-ICP-MS/MS

Novel method for the simultaneous determination of **particle size** and **mass concentration** of silica nanoparticles by asymmetric flow field flow fractionation coupled with **online** (i) **multiangle light scattering (MALS)** and (ii) **ICP-MS/MS** detection

Aureli et al. J Anal At Spectrom 30, 1266 (2015)

Asymmetric flow field flow fractionation-ICP-MS/MS

The method opens the way to studies involving the use of isotopically enriched silica NPs

FFF-ICP-MS/MS of a quadrimodal mixutre of silica NP's obtained by recording the signals of ${}^{28}Si^{16}O^+$ (red, left axis) , ${}^{29}S^{i16}O^+$ (green, right axis), and ${}^{30}S^{i16}O^+$ (blue purple, right axis)

□ Element-specific detection by ICP-MS/MS using all the three silicon isotopes

Aureli et al. J Anal At Spectrom 30, 1266 (2015)

ICP-MS-based techniques

Decision flow-chart for ICP-MS based techniques for nanoparticle analysis

Modified from Meerman et al. J Anal At Spectrom 33, 1452 (2018)

Take home messages

- ICP-MS based techniques are the most promising tools for routine characterisation and detection of inorganic NMs, also in complex matrices after proper sample preparation
- In single particle ICP-MS, use of µs dwell times is key to resolve particle signal from dissolved/background signal and improve size LoDs
- Use of µs dwell times may have to be combined with the use of ion-molecule chemistry for resolution of spectral interferences
- Combination of AF4 with a variety of detectors (UV, DLS, MALS) offers a powerful characterization tool also for organic NMs; ICP-MS is the ideal detector for inorganic ones
- Development of multi-technique approaches and combination of separation and sizing techniques appears to be the way forward