

Total flexibility and unrivalled control of interferences in reaction mode by ICP-MS/MS technique

Presenter: Andrea Carcano

Agilent Technologies

General ICP-MS Components/Technology

Polyatomic Interference Formation

Helium interactions in an Octopole Reaction Cell Collision: Energy discrimination

Electrical potential (Octopole)

Conventional (Single) Quadrupole ICP-MS

The industry-standard ICP-MS layout:

- 1. Off-axis deflector lens to separate the ions from photons & neutrals
- 2. Collision/reaction cell (CRC)*, and
- 3. One quadrupole mass analyzer (a mass filter with a 1 u mass window)

* Since 1999 CRCs have been used to control spectral interferences in ICP-MS:

- Collision mode is well-established and widely used for typical analytes and applications
- Reaction mode is efficient and attractive, but can give errors due to unwanted reactions with other analytes and matrix elements

Uses Helium Mode or Hidrogen mode

He mode is effective against all common polyatomic interferences – even from unknown or variable matrices.

He mode simplifies method development, by allowing a single set of cell conditions to be used for all analytes in all typical matrices.

Saves time and cost

Controlling Interferences in ICP-MS Collision Mode or Reaction Mode

(Helium) Collision Mode

- Employed successfully by Agilent ICP-QMS users since 2001 to control polyatomic interferences in complex sample matrices
- Filters out polyatomic ions using kinetic energy discrimination (KED);
- Ensures accurate analysis of most common analytes in typical samples
- BUT, He mode is not effective for doubly-charged or isobaric overlaps, and is not suitable for ultra-low level (semicon) analysis

Reaction Mode

- Can be effective for doubly-charged and isobaric overlaps, and to remove very intense polyatomics
- BUT, reaction chemistry depends on ions in the cell, so results vary if sample composition changes
- Reaction mode on ICP-QMS is often not reliable, and gives errors in variable samples

• HOW CAN WE MAKE REACTION CHEMISTRY MORE RELIABLE?

The Answer: ICP-MS/MS

Quadrupole ICP-MS (ICP-QMS). Single mass filter, after the cell

No mass selection before cell; ALL ions enter cell and can react

Triple Quadrupole ICP-MS (ICP-QQQ). Double mass filter, before/after cell

separated by reaction chemistry

react to form new product ions

Mass selection before cell; Q1 rejects all masses except target ion m/z. ONLY target analyte and on-mass interferences enter cell. Overlaps at product ion mass are eliminated

Only the target analyte ions contribute to the measured signal

to the measured signal

The Solution to Controlling Reaction Chemistry in the CRC?

Triple Quadrupole ICP-MS (ICP-QQQ or TQ):

- Uses an additional mass filter <u>before</u> the CRC in a "tandem" mass spec configuration (MS/MS)
- First quadrupole (Q1) selects the specific mass of the ions that can enter the cell. Ensures that reaction chemistry is predictable and reliable
- MS/MS allows reaction gas methods to be applied to normal applications and variable, real-world samples, with confidence in the results

MS/MS requires two fully functioning mass filters. Each mass spectrometer must be able to select <u>individual</u> mass to charge values (m/z)

IUPAC definition of Mass spectrometer (Term 318 from the 2013 Recommendations): *"Instrument that measures the m/z values... of gas-phase ions"*

First commercial ICP-QQQ instrument (Agilent 8800) in 2012. Superseded by the Agilent 8900 (below) in 2016

Additional Mass Filter (Q1) in ICP-QQQ

ICP-QQQ (ICP-MS/MS) provides superior performance to single quad ICP-MS because of its **double mass selection** (one mass filter before the collision/reaction cell and one after the cell). Without double mass selection, reaction chemistry is not controlled – like on single quad

What is ICP-QQQ?

When is Triple Quadrupole ICP-MS Needed?

For interferences that can't be resolved adequately using single quad methods

Lower analyte concentrations

• Ever-lower DLs required for "emerging" trace element contaminants (REEs, PGEs, Pu, Np...) and unusual applications (speciation, nanomaterials...)

Higher/more complex matrices

• Contaminant analysis in high-purity chemicals and complex materials (alloys, ceramics, REEs, liquid crystal...)

"Unusual" elements/isotopes

Increasing interest in trace level and/or isotopic analysis of "non-ICP-MS" elements (Si, P, S, CI, F...) – often affected by intense interferences O₂, N₂, ArH...

Overlaps not from polyatomic ions

• Isobaric & doubly charged interferences and peak tail overlaps that can't be addressed using helium (collision) mode and kinetic energy discrimination

Reaction gas methods enable (or improve) the targeted removal of these types of interferences

Abundance Sensitivity (AS) in ICP-MS and ICP-MS/MS

Why having two functioning mass filters improves your analytical results

Abundance sensitivity is a measure of peak tailing – the contribution a peak at mass M makes to the adjacent masses at M-1 and M+1.

Related to resolution, but applies to tailing below the 10% peak height where resolution is measured

Why ICP-QQQ? Further Benefit of MS/MS Abundance Sensitivity

MS/MS for Improved Peak Separation Dramatically Better Abundance Sensitivity

Abundance Sensitivity (AS) in ICP-MS and ICP-MS/MS

The AS of a typical single quadrupole ICP-MS is ~ 10^{-7} . It means a peak of 10^7 cps would contribute 1 cps to the neighboring peaks

Overall AS of tandem MS is the product of the AS of the two mass filters - Q1 AS x Q2 AS

- On the Agilent 8900 ICP-QQQ with two 1 u mass filters, this is 10⁻⁷ x 10⁻⁷ = 10⁻¹⁴
- This means a peak of 10¹⁴ cps contributes ONLY 1 cps to the masses either side
- ICP-MS/MS is easily able to measure a trace analyte adjacent to a major element peak

Practical Benefits of Superior AS of ICP-MS/MS

Example applications where the better abundance sensitivity of MS/MS allows interferences to be resolved that cannot be done by SQ (or Bandpass):

- Mn in high Fe matrix (iron, alloys, whole blood)
- ²³⁷Np in U matrix
- B in organics (¹¹B is the major isotope, but is overlapped by the tail from the ¹²C peak)

Low ppt DL for B (left) & perfect isotope fit for B isotopes (right) in xylene using MS/MS on the Agilent 8900 Example of benefit of improved AS with MS/ MS: Resolution of B isotopes from C in organic solvents (xylene)

¹²C peak is over-range

Some Basics – Operational Modes

Mass Shift Mode: Arsenic determination with ICP-QQQ

Mass Shift Mode: Arsenic determination with ICP-QQQ

Q1 eliminates all off-mass species before they can enter the CRC This eliminates any reaction by-products before they form

Application Example: Sulfur Analysis Previously difficult element for quadrupole ICP-MS

Sulfur analysis is of interest in many research and commercial laboratories

- Pharma and biopharma (sulfur-containing drugs)
- Life sciences research (protein/peptide quantification)
- Petroleum (fuels) and petrochemicals industry
- Environment (soil, plants, water, air quality)
- Food (preservatives, flavor/fragrance)

Reaction process is O-atom addition: S measured as SO⁺ product ions, i.e. ³²S measured as ³²S¹⁶O⁺ at m/z 48

Application Example: Analysis of Sulfur by ICP-QMS Mass-Shift with O2 Reaction Gas

Sulfur is measured as SO⁺ using oxygen (O_2) cell gas with ICP-QMS. O_2 reaction mode can avoid ${}^{16}O_2^+$ and ${}^{14}N^{18}O^+$ overlaps on ${}^{32}S^+$:

```
^{32}S^+ + O_2 < \text{cell gas} \rightarrow ^{32}S^{16}O^+
^{16}O_2^+, ^{14}N^{18}O^+ + O_2 \rightarrow \text{no reaction}
```

but SO⁺ product ion at m/z 48 can be overlapped by ⁴⁸Ca⁺, ⁴⁸Ti⁺, ³⁶Ar¹²C⁺

No Q1 - all ions enter the cell

Conventional ICP-QMS has no mass filter before the cell, so cannot reject existing interferences that overlap cell-formed analyte reaction product ions

Application Example: Analysis of Sulfur by ICP-QQQ MS/MS Mass-Shift with O₂ Reaction Gas

Same reaction with O₂ cell gas for S on 8900 ICP-QQQ with MS/MS:

 $^{32}S^+ + O_2 < \text{cell gas} \rightarrow ^{48}SO^+$ $^{16}O_2^+, ^{14}N^{18}O^+ + O_2 \rightarrow \text{no reaction}$

<u>BUT</u> Q1 of 8900 rejects any ions (Ca⁺, Ti⁺, ArC⁺) that could overlap SO⁺ product ion at mass 48

Allows measurement of SO⁺ at product ion mass, after removal of original O_2^+/NO^+ interference, and existing ions at SO⁺ product ion mass

Measurement of Sulfur by **ICP-QMS** S standard overlaid with Ca, Ti and C matrix

Measurement of Sulfur by **ICP-QQQ** S standard overlaid with Ca, Ti and C matrix

ICP-QQQ; The Benefit of MS/MS is Clear Sulfur measured as ^{32/33/34}S¹⁶O⁺ (Q2 set to Q1 + 16 amu)

Top - "Single-Quad" Bandpass Mode

All masses between ~ 15 amu and 65 amu enter the cell, so other ions (Ca⁺, Ti⁺, ArC⁺) contribute to signal at SO⁺ isotope masses.

Results are unreliable; ALL S isotopes are interfered, and the interferences on the different S isotopes are matrix-dependent

Bottom – Agilent ICP-QQQ in MS/MS Mode

SO⁺ peaks match the theoretical isotope abundance template in all samples.

All S isotopes are interference-free; secondary isotopes can be used for confirmation, or for isotopic analysis (isotope ratio or isotope dilution)

ICP-QQQ – Typical Applicative Markets

