The role of single particle ICP-MS with microsecond time resolution in a multi-technique approach for unveiling the transformations of ingested metalbased nanoparticles

<u>Francesca Ferraris</u>, Sara Savini, Federica Aureli, Andrea Raggi, Francesca lacoponi, Francesco Cubadda

Istituto Superiore di Sanità – National Institute of Health, Rome, Italy Dept. Food Safety, Nutrition and Veterinary Public Health

francesca.ferraris@iss.it

Workshop A.I.S.E.T.O.V. 2019 Piacenza, 21 June 2019

Peculiar fate of ingested nanomaterials

Nanoparticles entering the human body via the oral route are subjected to conditions that are very different from those encountered via other exposure routes

Low

Stomach

Physicochemical properties of any ingested particulate material will be affected by:

- extreme pH and ionic strength shifts encountered during gut transit
- the co-ingested food material

Interaction between particles and food components

☐ the **enzymes and bile acids secreted** within the gut

pН

increase

Small

intestine

Changes promoted by interaction with the GI environment

The extremely **low pH** of the stomach may promote:

oxidation/dissolution of nanoparticles constituted by soluble metals/metal oxides with **release of constituent ions**

The **high ionic strength** in the stomach and intestine critically affect nanomaterial properties, in many cases leading to:

agglomeration in the gastric phase

deagglomeration in the intestinal phase

Important factors affecting degradation/dissolution and agglomeration/deagglomeration are expected to include physical forces, temperature, pH, presence of enzymes, salts and bile, interactions with food components

[Peters et al. 2012, ACS Nano 6:2441; Walczak et al. 2013, Nanotoxicol 7:1198; Sieg et al. 2017, Langmuir 33:10726; DeLoid et al. 2017b, Part Fibre Toxicol 14:40]

In vitro digestion models to assess the fate of ingested NMs

Changes in: size-related properties shape surface characteristics May affect the: **intestinal uptake** of the particles **kinetic behaviour** of the particles

Overall, interactions of nanoparticles with the gastrointestinal environment critically affect their **biological and toxicological properties**

Acellular *in vitro* methods simulating human digestion and mimicking physiological conditions *in vivo* as tools to assess the modifications/dissolution of nanomaterials

There is a **lack of validation** and **standardisation** of *in vitro* digestion models for nanomaterials

Time-dependent transformations of real world particulate materials under conditions representative of the gastrointestinal tract have been studied by robust *in vitro* digestion methods **with standardised protocols** in the:

Nanomaterials that **quickly dissolve/degrade** in the gastrointestinal tract do not give rise to nano-specific concerns and **standard risk assessment can be followed**

If nanoparticles persist as such after gastrointestinal digestion they may be absorbed in the gut and nanospecific risk assessment is required

In vitro simulated GI digestion

Assessment of the degradation rate of nanomaterials in conditions representative of the human gastrointestinal tract is considered the key first step

An *in vitro* digestion method suitable for food under **fed conditions** has been described by Minekus *et al.* (2014)

Time-dependent transformations of real world particulate materials under conditions representative of the gastrointestinal tract have been studied by robust *in vitro* digestion methods **with standardised protocols** in the:

Nanomaterials that quickly dissolve/degrade in the gastrointestinal tract do not give rise to nano-specific concerns and standard risk assessment can be followed

If nanoparticles persist as such after gastrointestinal digestion they may be absorbed in the gut and nanospecific risk assessment is required

EFSA GUIDANCE - in vitro simulated GI digestion

A nanomaterial is considered to degrade quickly (i.e. have a high degradation rate) if the degradation rate profile in the intestinal phase shows a clear decrease in the presence of particles over time (no plateau), and that 12% or less of the material (mass-based) – compared with the particulate concentration at the beginning of the *in vitro* digestion – is present as particles after 30 min of intestinal digestion

As a sub-argument, it is also assumed that even if a fraction of such quickly degrading materials is absorbed as particles, it **is expected that further degradation will occur under e.g. lysosomal conditions** and that they are unlikely to remain as particles for a long time

Ten different food-grade particulate materials belonging to four chemical classes were studied:

Synthetic amorphous silica

Titanium dioxide

□ Iron oxides/hydroxides

Zinc oxide

- 4 samples of the food additive (E551): 2 representative of food-related applications from the JRC repository, 2 from commercial suppliers
- 2 different samples of the food color (E171) from commercial suppliers
- 2 samples of the food color (E172) from commercial suppliers: one Yellow iron oxide (FeO(OH)) and one Red iron oxide (Fe_2O_3)
- 2 samples: one used as nutrient source for human consumption, the other one for animal consumption

The experimental procedure

Cereal based model food

Composition of model food:

- □ Fats: 5%
- □ Carbohydrates : 11%
- E Fiber: 3%
- □ Proteins: 11%
- Salt: 2%

2h Gastric SF

30' Intestinal SF

The model food was homogenized and a part was stored for further studies

Physicochemical characterization: multi-method approach

Dinamic light scattering (DLS)

Agglomeration behaviour of the pristine material (different pH) Physicochemical characterization of pristine materials: the importance of sp IC-MS

Titanium dioxide (TiO₂)

Similar results obtained by spICP-MS : **small agglomerates** in addition to primaries (visible by **higher frequencies at larger diameters)**

Physicochemical characterization: multi-method approach

(different pH)

Preliminary results post gastointestinal in vitro digestion- sp ICP-MS

Similar to the distribution obtained for the characterization of **pristine TiO2** by sp ICP-MS

Conclusions

- Nanoparticles entering the human body via the oral route are subjected to conditions that are very different from those encountered via other exposure routes
- Physicochemical properties of ingested particulate material are affected by pH and ionic strength shifts, co-ingested food material, enzymes secreted within the gut. This environment critically affect the biological and toxicological properties of the ingested nanoparticles
- □ Time-dependent transformations of **real world particulate** materials applying the in vitro acellular methods were studied according to the assessment scheme of the EFSA Guidance
- Ten different food-grade particulate materials belonging to four chemical classes were studied and the focus was on checking robustness of protocols for possible standardisation
- A state-of-the-art multi-technique approach was used for the physicochemical characterization of the materials before and after the tests
- □ Single particle ICP-MS as an essential technique in order to characterize nanomaterials after the simulated *in vitro* GI digestion

Acknowledgements

□ Italian Ministry of Health

'Application of nanotechnologies in the agri-food sector: analysis and assessment of nanomaterials in food and preparedness of the food safety system'

Francesco Cubadda Federica Aureli Francesca Iacoponi Andrea Raggi Sara Savini

THANK YOU FOR YOUR ATTENTION !