

Workshop A.I.S.E.T.O.V 2019

TRACEABILITY OF PROTECTED GEOGRAPHICAL INDICATION (PGI) SORRENTO LEMON BY CHEMOMETRIC ANALYSIS OF THE SOIL AND JUICE MINERAL COMPOSITION

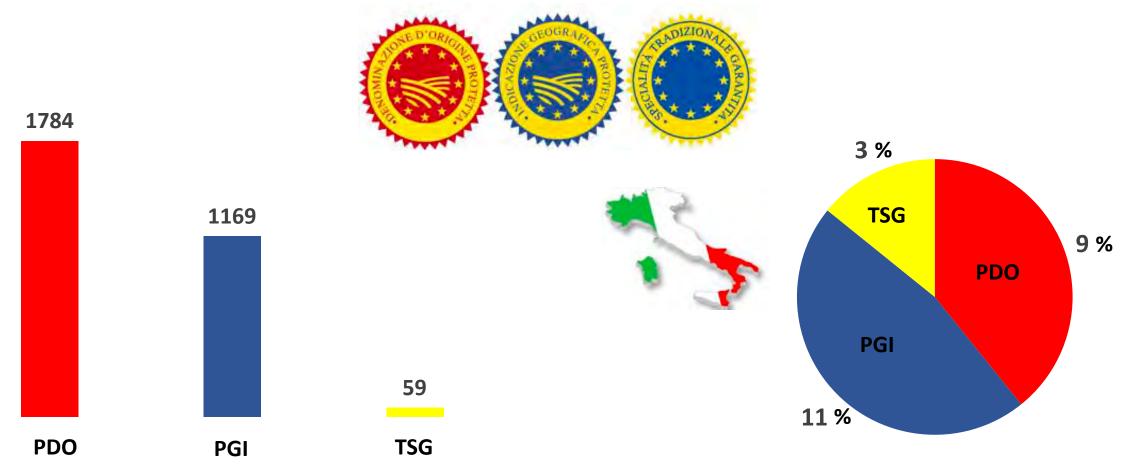
Luigi Ruggiero^a, M.C. Fontanella^b, C. Amalfitano^a, G.M. Beone^b, C. Di Vaio^a and P. Adamo^a

^a Department of Agricultural Sciences, University of Naples Federico II, Italy; ^b Department for Sustainable Process, Università Cattolica del Sacro Cuore, Piacenza, Italy

email address: luigi.ruggiero@unina.it

What is Traceability and Why is Important?

Strong connection that binds the food to its territory of origin



For consumers:

- > more guarantees;
- increased food safety;

Overview of European and Italian High-Quality Food Products

European High-Quality Food Products

Italian High-Quality Food Products

FOOD FRAUDS IN ITALY

In 2018, 17,500 tons of irregular agro-food products have been seized for a commercial value of over 21.8 million euros.

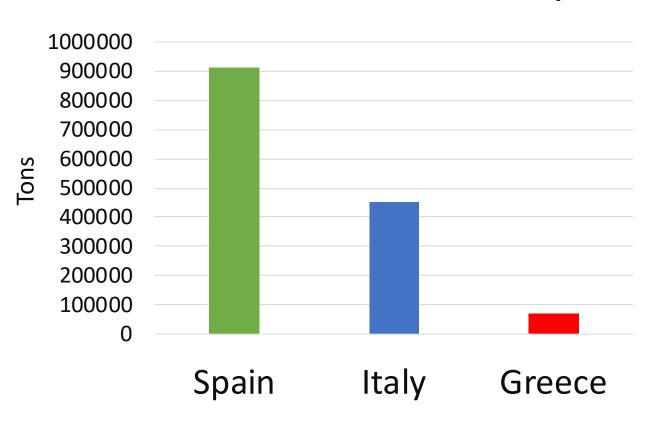
Analytical techniques for authentication and determination of the geographical origin of foods

Techniques	Sensitivity	Simplicity	Time analysis	Costs	Reported applications	Compounds	Identification/profiling
MS	910	58-015	25.5		10	00000	102
IRMS	+	+/-	+/-		+	Various	i + p
ICP-MS	+	+/-	+	-	+	Elements	i + p
PTR-MS	+	+	+	-	-	Volatile	p
GC-MS	+	+	+/-	-	+	(Semi) volatile	i + p
Spectroscopy							
NMR	-	+/-	+/-	-	-	Various	i + p
IR.	+/-	+	+	+	+	Various	p
Fluorescence	+	+	+	+	-	Various	p
Atomic	+/-	+/-	+/-	+/-	+	Elements	i + p
Separation							
HPLC	+/-	+	+/-	+	+	Various	p
GC	+	+	+/-	+	+	(Semi) volatile	p p
CE	_	+	+/-	+	-	Various	p
Other							
Sensor technol.	-	+	+	+/-	+/-	Volatile	p
PCR	+	+/-	+/-	+	_	DNA	i + p
Sensory analys.	+/-	+/-		-	-	Various	p

Favourable (+), moderate (+/-), unfavourable (-)

(Luykx et al., 2008).

Elements in Soils and Plants


Soils formed in different geographic areas (different soil, different environment) are different for mineral and geochemical composition

The bioavailability of inorganic elements in soil and the chemical composition of a crop is greatly affected by soil properties, such as pH, moisture, organic matter and clay, as well as plant requirements

Lemon Fruits Production

Lemons Production in Europe

Italy is the second largest lemon fruit producer in the Europe on a cultivated surface of 23,000 ha

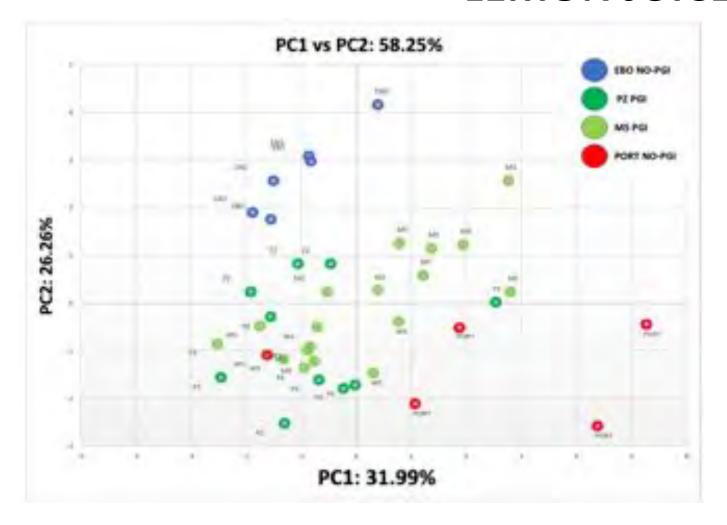
Frauds

As most part of high quality products, they are affected by a lot of frauds

Aims of the work

- Discriminate Limone di Sorrento samples multielement fingerprinting that come from PGI area to lemon that come from two different cultivation area of Campania region.
- **Compare** multi-element fingerprinting of lemon with bioavailable element contents in the cultivation soil
- Protect Limone di Sorrento from frauds with lemons of other geographical origin.

STUDY AREA AND SAMPLING


- ➤ 39 full ripening lemon fruits,cv "Ovale di Sorrento, (from Jan. to Mar. 2018)
- ➤ 4 different sampling sites:
- Limone di Sorrento PGI area
- Massa Lubrense (MS)
- Piano di Sorrento (PZ)
- Limone di Sorrento NO-PGI area
- Portici (PORT)
- Eboli (EBO).
- > Two depths of soil sampling
- **top soils**, 0-20 cm
- **sub soils**, 40-50 cm

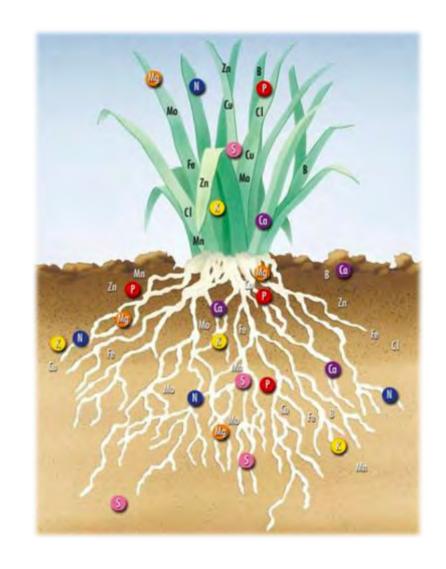
MULTI-ELEMENT ANALYSES

- Lemon Juices were mineralized by acid digestion (5 mL HNO₃, 2 ml H_2O_2) in microwave.
- Potentially bioavailable elements in soils were extracted by EDTA 0.05 M with 1:10 soil/solution ratio.

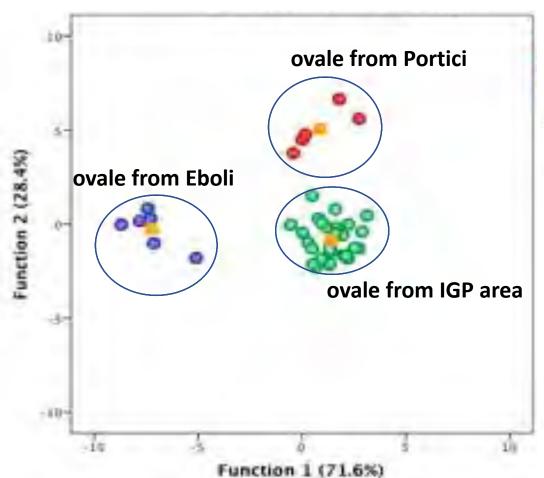
		LEIMON JUICES (µg/kg)										SOILS (mg/kg)								
		PGI					NO-PGI				PGI				NO-PGI					
	MS	(m	16)	P2	(ne	12)	POR	tT (i	v=5)	E8	O (e	v=6)	MS	(m=4)	PZ()	946)	PORT	(m=2)	EBO	(m=2)
Elements	mean		#50	mean		150	mean		#5D	mean		#SD	Top soil	Sub soil	Top soil	Sub soil	Top soil	Sub soil	Top soil	Sub so
TI	9.69	ab	2.98	9.51	ab	3.72	13.63	ь	7.37	6.82		0.41	9.63	5.63	7.57	5.37	2.16	1.53	6.56	5.01
V	0.33	ab	0.18	0.45		0.32	0.63		0.33	0.36	a	0.07	1.63	1.82	1.48	1.53	1.16	1.13	9.46	8.01
Fe	207.71	6	27.27	193.29	b	59.02	159.68	b	120.48	73.02		8.47	143.81	72.13	188.79	119.70	76.92	61.83	123.57	94.65
Mn	108.06		42.88	145.51		35.89	106.75		44.06	95.95		14.59	85.76	55.56	33.36	13.82	18.30	23.36	416.21	326.17
Co	0.49		0.23	0.34		0.17	0.78	ь	0.24	1.38	ь.	0.15	0.37	0.27	0.15	0.10	0.07	0.07	2.94	2.14
Cu	293.30	a	63.90	245.20		45.58	319.05		48.12	271.77		47.06	76.03	19.10	117.96	49.61	26.32	22.40	22.63	6.76
Zn	430.26	¢	80.96	376.84	ab	84.09	499.94	bc	97.27	270.85		30.27	15.61	4.45	25.29	10.08	2.14	1.64	1.93	0.72
Se	1.47		0.62	1.31		0.34	1.99		0.24	1.68		0.72	0.15	0.14	0.12	0.12	0.08	0.06	0.34	0.31
Rb	1299.20	be	329.69	890.77		132.14	1099.37	ab	271.49	1627.82	6	157.06	0.94	1.03	1.14	1.28	0.71	0.78	0.18	0.25
Sr	238.96	b	49.79	164.78	ab	65.36	160.89		61.78	139.95		34.14	33.00	29.61	24.71	27.28	15.15	16.69	19.82	18.34
Ma	7.96		4.45	7.76		4.56	15.80	ь	4.82	9.82	ab	4.22	0.02	0.02	0.03	0.02	0.02	0.02	0.08	0.08
Ba	63.95	b	38.17	69.91	b	32.85	30.03	b	16.12	84.16		17.95	36.06	59.83	21.53	54.66	17.13	29.50	25.27	128.64

LEMON JUICES

	Princ	ipal Comp	anent
	PC1	PC2	PCS
n	0.46	-0.10	0.01
Fe	0.38	-0.39	-0.07
Co	0.12	0.46	-0.43
Cu	0.30	0.19	0.25
Zn	0.40	-0.31	0.13
Se .	0.35	0.22	-0.23
Rb	0.14	0.50	-0,06
5r	0.28	0.14	0.62
Mo	0.39	-0.01	-0.39
Ba	0.04	0.41	0.38
Total Variance %	32.0	26.3	13,1
Cumulative Variance %	32.0	58.2	71,3


KMO test = 0.593; **Bartlett sphericity test**, p < 0.001

LEMON vs SOIL RELATIONSHIPS


Person Correlation Analysis

AV	Fe	Co	Rb	Sr	Ba
Top Soil (0-20cm)	-0.360	0.800	-0.551	0.563	0.436
Sub Soil (40-50cm)	ns	0.799	-0.499	0.380	0.471

ns not significant

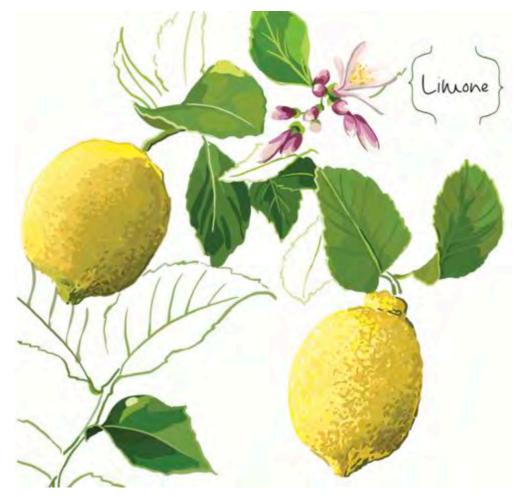
***LINEAR DISCRIMINANT ANALYSIS (LDA)**

Structure Matrix						
	Function					
	F1	F2				
Co	-0.492	0.232				
Rb	-0.192	-0.031				
Sr	0.116	0.114				
Fe	0.305	-0.514				
Mo	-0.031	0.300				
Ba	-0.106	-0.247				
Zn	0.209	0.212				
Ti	0.099	0.191				
Se	-0.048	0.183				
Cu	0.011	0.137				

- Based on the 10 elements
- 100% of correct classification
- The model was cross-validated with satisfactory results.

(100% of correct reclassification).

λ Wilks 0.017 **p-values** < 0.0001


CONCLUDING REMARKS

- The results confirm multi-element fingerprinting as a valid indicator of agri-food geographical provenience. Indeed, multi-element fingerprinting was able to discriminate the "Limone di Sorrento" from lemons of the same cultivar coming from NO-PGI areas.
- ➤ The results showed a relationship between the multi-element fingerprinting of the soil and the lemon.
- > This suggests that the technique might be used to protect "Limone di Sorrento" by frauds.

Future investigations including a more significant number of cases are necessary to confirm these promising preliminary results

On going activities

- More samples and farms
- Samples from different years
- Samples at different maturation stages
- ➤ Analysis of Sr isotopic ratio (87Sr/86Sr) in Soil (Bioavailable content) and lemon
- Analysis of essential oils in lemon peels (GC-MS and PTR-MS)

