Piacenza • 30th August – 1st September 2011

XIV Symposium in Pesticide Chemistry

Pesticides in the environment: fate, modelling and risk mitigation

RISK PREVENTION/RISK MITIGATION SESSION

Urban pesticide best management practices: results of Phyt'Eaux Cités, a program to reduce river contamination (2007-2010, France)

<u>Fabrizio Botta</u>*, Fauchon N., Guery B., Chevreuil M. and <u>Blanchoud H.</u>

Email: <u>helene.blanchoud@upmc.fr</u>, *now at INERIS, <u>fabrizio.botta@ineris.fr</u>

Introduction

Piacenza • 30th August – 1st September 2011

Runoff principal way of pesticides transfer to surface water in urban areas

impervious surfaces – irregular land cover – multiple uses and users

Context

Piacenza • 30th August – 1st September 2011

SEDIF: A public DRINKING WATER SERVICE for the GREATER METROPOLITAIN PARIS AREA

- Delivery territory: 144 Municipalities
- 4 Milli
- 900 More than 13600
- pesticide analyses
 par year

More than 130 molecules

Outle marque livre à domicile. 365 jours pdr lan, une eau prestricide detection

Idea developed in 2006

Piacenza • 30th August – 1st September 2011

PROJECT LEADER

WATER QUALITY

SCIENTIFICAL RESEARCH

Material and methods

Piacenza • 30th August – 1st September 2011

Phyt'Eaux Cités

<u>Audit</u> of public users and inquiry on total applied quantities

Sampling

- 1st sampling first week of the month 189 molecules (2007)
 212 molecules (2008-2009-2010)
- 2nd sampling third week of the month
 42 substances (principal urban contaminants)

Audit Results

- ✓ After one year <u>53% applications less</u> as compared to <u>2007</u>. A good percentage of local authorities had also started other type of treatments.
 - ✓ After three years, 50 municipalities participated at least to one theoretical training (49 to the practical one)
 - ✓ After four years, 28 cities started a sustainable planning and 2 cities stopped treatments
 - ✓ At the end of 2010, 414 technical service <u>agents trained</u> (97% considered those trainings useful)

Audit Results

Piacenza • 30th August – 1st September 2011

- ✓ Between 2007 and 2009, 56 municipalities have signed the Phyt'Eaux Cités charter
 - ✓ Reduction of 68% of active substance quantities (2267 kg in 2007 as compared to 728 kg in 2009)
- √ 12% of the inquired cities stopped some treatments (ex. cemeteries)
 and 44 cities stopped sport field treatments
 - ✓ <u>77 % of the local authorities</u> respect of environmental health European and national policies (better use)

Clover of engagement

Result screening 2007

- 189 substances (171 active substances and 18 metabolites, filtered water).
- At the outlet of the Orge Basin, 33 substances (29 active substances and 4 metabolites) were quantified at least one time and 6 displayed 100% frequencies (glyphosate and its metabolite, diuron and its metabolite, amitrole and atrazine)

- ✓ Pesticide application months: maximal risk of transfert
- ✓ Fortnight sampling: established sampling date, random hydrology
 - √ 10 rainfall events: maximal concentrations

Inter annual variations

Load Results

Piacenza • 30th August – 1st September 2011

$$\mathrm{Flux} = \frac{\sum_{j=0}^{365} [C] \sum_{j=0}^{91} (C) \sum_{j=0}^{91} (C) \sum_{j=0}^{91} (C) \sum_{j=0}^{244} (C) \sum_{j=0}^{244} (C) \sum_{j=0}^{244} (C) \sum_{j=0}^{244} (C) \sum_{j=0}^{91} (C) \sum_{j$$

Annual Glyphosate load in kg for 2007

Blanchoud et al., 2011, Piren Seine

Load decrease

Year	2007	2008	2009	2010
Rainfall days	176	182	149	162
Water Volume at Athis Mons (Mm³)	111	111	98	119

Maximal periods	2007	2008	2009	2010
Rainfall days	76	67	52	53
Water Volume at Athis Mons (Mm³)	48	41	35	39

Substances	Decrease 2008 – 2010
Diuron	93 %
Glyphosate	50 %
Aminotriazole	44 %
AMPA	20 %

Uncertainties summary

Piacenza • 30th August – 1st September 2011

- Uncertainty on pesticide analysis
 - Between 10% and 30%

Blanchoud et al., 2011 Piren Seine

- Uncertainty on load calculation when detection frequency is very low
 - Different quantification limits
 - Maximal load values: LQ / 2
 - Minimum load values: 0
- Discharge uncertainty
 - Daily mean discharge
- Uncertainty on method, rainfall dry periods
 - Considering suspended matter or discharge?

Pesticide origin

Piacenza • 30th August – 1st September 2011

- ✓ Chlortoluron and isoproturon essentially applied in winter (high discharge low temperature)
- ✓ AMPA metabolite of glyphosate upstream, at Athis-Mons partly originated from detergent degradation
 - ✓ Mecoprop has urban origine in Athis-Mons whereas it as agricultural origins in Sermaise

Study at the Orge watershed scale: URBAN origin of Orge River contamination

Export modeling

Piacenza • 30th August - 1st September 2011

Documented Urban Input

?

Botta et al., 2009 PhD Manuscript

Municipalities

Railways

Airport

Roads

Householders

Scenario 1 Phyt'Eaux Cités

No impact of householder applications

Glyphosate

11 %

Diuron -

16 %

- Amitrole

15 %

Scenario 2 Blanchoud, 2004

Estimation

Householders
(13 g.hab.year⁻¹)

2.3 %

3.5 %

3.4 %

Scenario 3 Boulet, 2006

Householders (86% of total urban application)

Estimation

1.4 %

2.1 %

2 %

<u>Min</u>

Conclusions

Piacenza • 30th August – 1st September 2011

Phyt'Eaux Cités → 2007-2010

- The impact of pesticide used in urban settlements on surface water quality was confirmed.
 - Use of pesticides by municipalities generally decreased from 2007 to the end of 2010.
- In some cities, chemical treatments were also replaced by other type
 of weed-control (thermal, mechanical, etc...).
 - Using different load calculation methods, a sensible decrease of pesticide load in river was registered from 2008 and 2010.

Outlook

Piacenza • 30th August – 1st September 2011

"Phyt'Eaux Cités was a new approach to reduce the contamination of surface water by pesticides.

The programme suggested to city staff specific pest management strategies and general alternative controls.

The more knowledge and mobilization of the local authorities could reduce urban pesticides transfer.

Project Phyt'Eaux Cités 2 -> 2012-2016

Piacenza • 30th August – 1st September 2011

Acknowledgements

for funding the project

Piacenza • 30th August – 1st September 2011

XIV Symposium in Pesticide Chemistry

Pesticides in the environment: fate, modelling and risk mitigation

Auditorium Mazzocchi • Università Cattolica del Sacro Cuore

