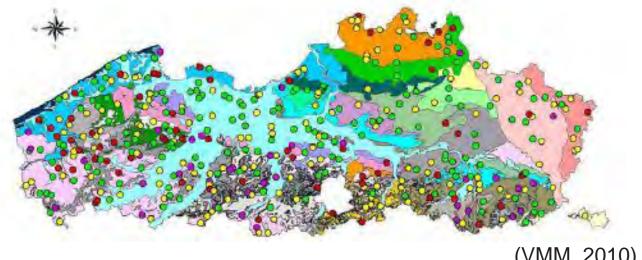


Measuring and modelling pesticide leaching in macroporous soils along a hillslope

Ingeborg Joris¹, Piet Seuntjens^{1,2,3}, Wesley Boënne¹, Xiangyu Tang⁴

XIV Symposium Pesticide Chemistry - Piacenza

¹ VITO, Environmental Modelling Unit, Mol, Belgium


² Department of Soil Management, Ghent University, Ghent, Belgium

³ Department of Bio-engineering Sciences, University of Antwerp, Antwerp, Belgium

⁴ Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China

Background

Despite rigorous registration procedure still pesticides found in groundwater

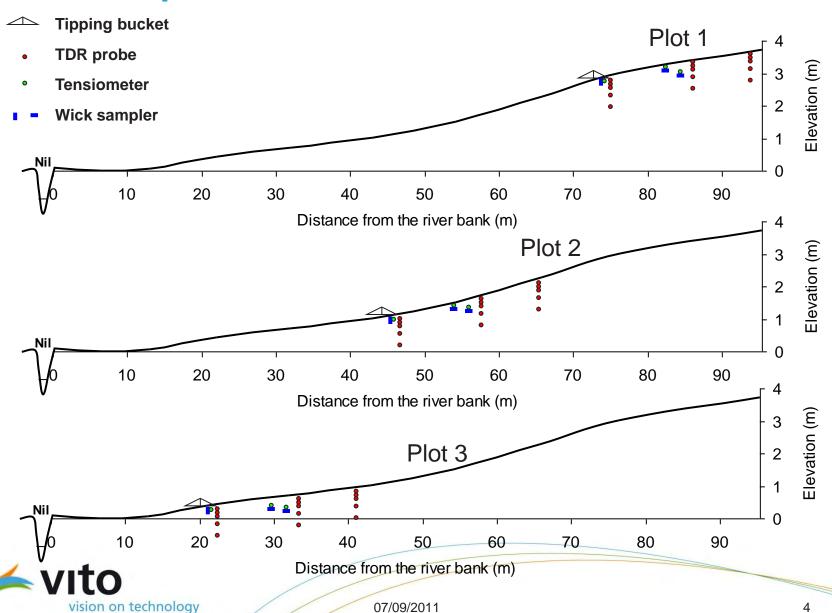
(VMM, 2010)

- Several reasons: historical burden, accidental, leaching
- This study: extensive and detailed monitoring of hydrological soil processes and pesticide concentrations to investigate processes controlling pesticide movement to groundwater

Field site

Nil-Saint-Martin

Hillslope: 80 x 10 m; Slope 5%


Loamy soil

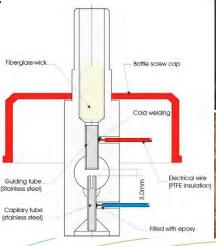
07/09/2011 © 2011, VITO NV

Legend

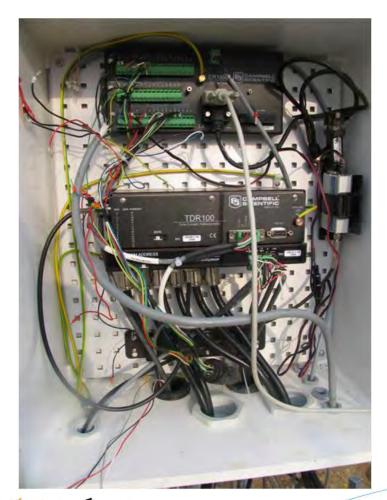
Plot set-up

© 2011, VITO NV

Site equipment

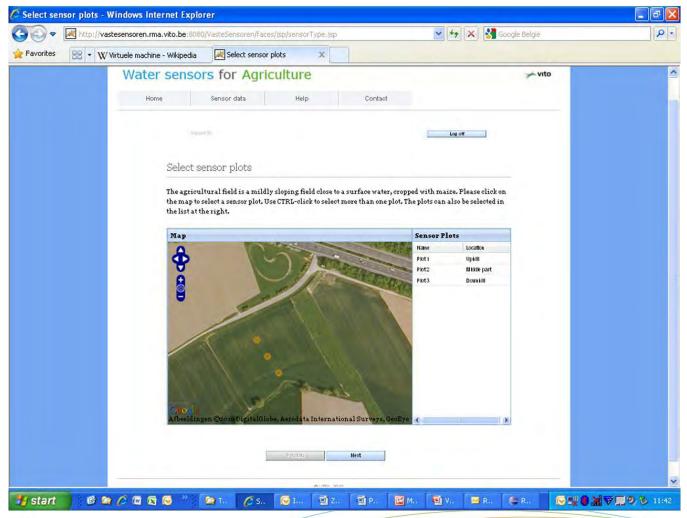

- » meteo-station: air temperature, relative humidity, wind speed, rain gauge
- » 3 surface runoff plots (2 m 22/50/75 m)
- » 45 TDR probes (9 locations; 10, 20, 30, 40, 50 and 100 cm depth)
- » 9 wick samplers (horizontally at 24 and 40 cm, vertically at 1-31 cm)
- » 9 tensiometers (5 cm from the wick sampler)
- » time resolution: meteo & fluxes every 15 min; soil moisture content and pressure head hourly

vision on technology


Mertens et al., 2008

Field installation

Datalogging & - transmission



Web service

http://vastesensoren.rma.vito.be:8080/VasteSensoren/faces/jsp/sensorType.jsp

Soil properties

Location	Depth cm	Clay %	Silt %	Sand %	Org. matter %	pH H₂O
P1	0-30	24.7	65.3	10.0	1.6	7.8
	30-100	23.3	70.5	6.3	0.3	7.7
P2	0-32	16.2	74.9	8.9	1.2	7.8
	32-100	20.9	72.8	6.3	0.2	7.6
Р3	0-30	12.4	77.0	10.5	0.9	7.6
	30-100	9.7	79.9	10.4	0.3	7.6

Pesticide properties

	Name	K _{oc} (I kg ⁻¹)	DT50 (d)	H' (-)
Substance 1	fluroxypyr	194.7 moderately mobile	51 moderately persistent	1.69 ^E -10 non-volatile
Substance 2	mesosulfuron- methyl	92 moderately mobile	78 moderately persistent	1.50 ^E -15 non-volatile
Substance 3	metsulfuron- methyl	39.5 mobile	10 non-persistent	6.17 ^E -15 non-volatile

PPDB (2009). The Pesticide Properties Database (PPDB) developed by the Agriculture & Environment Research Unit (AERU), University of Hertfordshire, funded by UK national sources and the EU-funded FOOTPRINT project (FP6-SSP-022704).

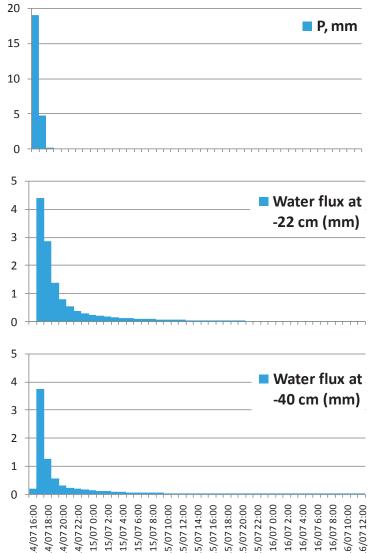
Evidence of macropores

» Visual inspection

P1

0-50 cm

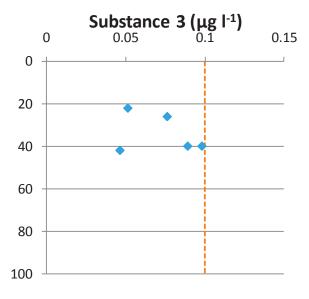
50-100 cm


Evidence of macropores

- » Visual inspection
- » Discrepancy between θ_{TDR} and θ_{gravi} (Tang et al., 2011)
 - » high spatial variation in soil moisture measurement in ring samples
 - » at a depth of 10 cm and 20 cm 46% and 65% resp. of measurements θ_{gravi} 3% volumetric water content higher than θ_{TDR}
 - » at a depth of 30 cm and 50 cm still 6%

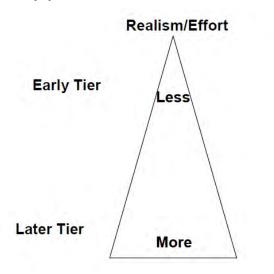
Measurement of water fluxes

- » Rainfall event on July 14
- » Plot 1 rainfall and drop counters at 22 cm and 40 cm below surface
- » Hourly measurements shown for 44 hours



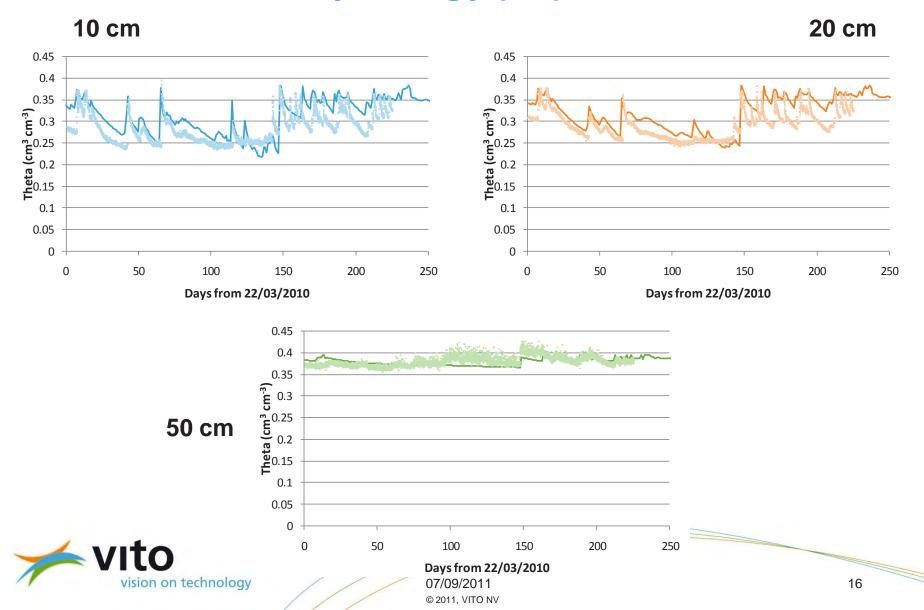
Pesticide measurements

Measurements in the 3 plots at the end of the growing season, 167 days after application

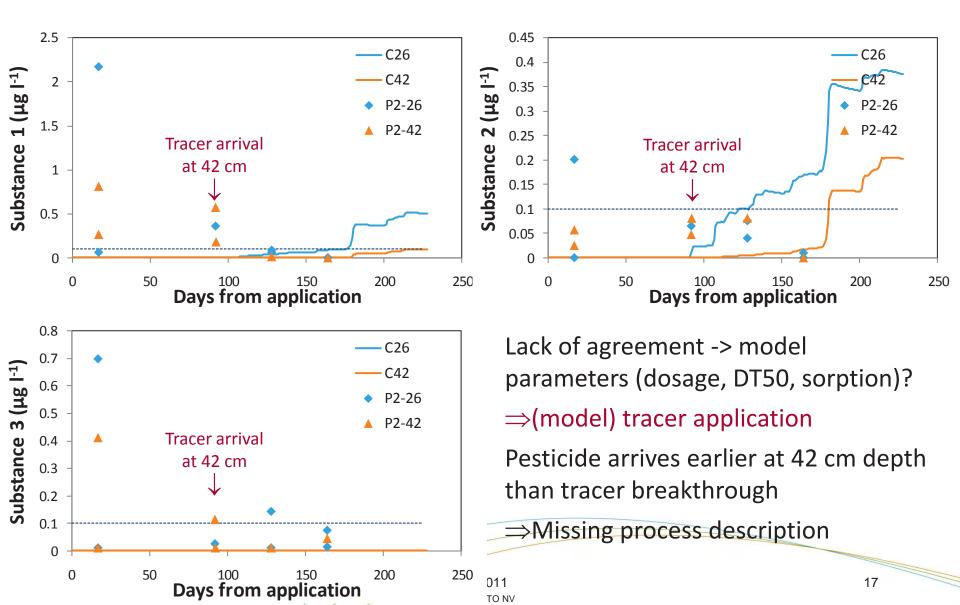


Model set-up

» FOCUS guidelines: tiered approach



(FOCUS 2009)


- » Simulation with FocusPEARL 4.4.4 => P90 < 0.01 μ g l⁻¹
- » More detailed simulation with PEARL
 - » fallow soil; 1 year with application of 3 substances
 - » site-specific soil properties and BC

Model results: hydrology (P2)

Model result: pesticide concentration (P2)

Conclusion and outlook

- » Preliminary results show:
 - » preferential flow processes responsible for rapid transport of pesticides in the soil profile (potentially to groundwater) in wellstructured loamy soils
 - » tiered approach (with conservative risk estimation in first tier) can give false sense of security if certain processes are not included in model set-up
- » Further steps: application of macropore flow model

