

Buffer strip width and agricultural pesticide contamination in Danish streams: Implications for stream and riparian management

Jes J Rasmussen Annette Baattrup-Pedersen Peter Wiberg Larsen Brian Kronvang

Outline

- > Transport routes for pesticides to streams
- > Methodology
- > Introduction to the SPEcies At Risk (SPEAR) concept
- > Pesticide toxicity and buffer strip dimensions
- Prediction of in-stream pesticide toxicity using the Runoff-Potential (RP) model
- > Conclusions

Jes J Rasmussen

Piacenza May, 2011

I. Major transport routes for pesticides

Frequency is similar while max. concentration is significantly higher in small streams

	Large	Large streams		Small streams	
	Frequency	Concentration	Frequency	Concentration	
	(%)	Max (µg/)	(%)	Max (µg/N	
lsoproturon	41	0.13	48	2.1	
Diuron	37	0.073	29	0.36	
Bentazon	25	0.028	37	1.2	
Fenpropimorph	0	0	3	0.11	
Dimethoat	2	0.034	4	0.12	

Examples of frequency and maximum concentrations of pesticides in two stream types from the Danish Monitoring Program (NOVANA)

NATIONAL ENVIRONMENTAL RESEARCH INSTITUTE AARHUS UNIVERSITY

Jes J Rasmussen Piacenza May, 2011

II. Methods

- > 5 Sites in forested catchments
- 9 Sites in catchments with intermediate to heavy agriculture

Pesticide sampling

- > Event-triggered samplers (storm flow)
- > Manual grab sampling of water (base flow)
- > Sediment sampling (kayak corers)
- Samples were analysed for 19 herbicides, 6 fungicides and 6 insecticides.

Pesticide sampling

Jes J Rasmussen

May, 2011

Piacenza

Modified from Liess & von der Ohe, 2005

Jes J Rasmussen

III. The SPEAR concept

Modified after Liess et al., 2008

May, 2011

IV. Results

	Storm flow	Base flow	Sediment
Tot. conc. (µg L ⁻¹)	0.01 – 3.17	0.01 – 0.06	X
TU _(Daphnia magna)	-6.63 to -1.57	-6.92 to -6.23	
In total: 13 Herbicide	es		
5 Fungicide	S		
2 Insecticid	es		

NATIONAL ENVIRONMENTAL RESEARCH INSTITUTE AARHUS UNIVERSITY

Buffer strips and pesticide toxicity

0

- In-stream pesticide toxicity
 was primarily controlled by the
 width of buffer strips
- Buffer strips are known to
 retain significant proportions
 of pesticide runoff
- However, effects of buffer
 strips have never been linked
 to the toxicity of pesticides
- > Tile drains???

NATIONAL ENVIRONMENTAL RESEARCH INSTITUTE AARHUS UNIVERSITY

Buffer strips and agricultural intensity

- In addition, the width of buffer strips is clearly governed by agricultural intensity in the catchment
- This probably explains some of the strength in the correlation between buffer strip width and pesticide toxicity

Rasmussen et al., 2011. (In press)

Jes J Rasmussen Piacenza

enza May, 2011

Buffer strips and predicted pesticide runoff

Rasmussen et al., 2011. (In press)

VI. Importance of buffer strips for obtaining good ecological quality

TU = -3 corresponds to 33%
 SPEARabundance = Good
 ecological status

NATIONAL ENVIRONMENTAL RESEARCH

INSTITUTE AARHUS UNIVERSITY

This emphasises the
 importance of vegetated buffer
 strips, but ideal dimensions
 should be estimated according
 to local site characteristics

Jes J Rasmussen Piacenza May, 2011

Conclusions

- The prevalence and dimensions of buffer strips is indeed an effective mitigation tool for the protection of the upper branches of agricultural streams – however ideal dimensions should be assessed based on local site characteristics
- The suggested buffer strip width for sufficient
 protection of streams from pesticides is much below
 the dimensions that are presently required by Danish
 legislation (2 m for some higher-order stream sections)

Jes J Rasmussen Piacenza May, 2011

Conclusion

- Despite the presence of buffer strips and relatively low pesticide application rates, the toxicity of found pesticide mixtures still exceed the threshold of expected community change
- Buffer strip characteristics improve predictive power of the RP model – and is tightly coupled to the occurrence and toxicity of agricultural pesticides in DK streams.
 We therefore find the improved RP model suitable for screening and identification of stream reaches at risk.
- Future research should focus on further improving the RP model using estimates for flow through tile drains

Jes J Rasmussen

Piacenza May, 2011

Thank you for your attention!